52,458 research outputs found

    Implications of Recent Bˉ0→D(∗)0X0\bar{B}^0\to D^{(*)0}X^0 Measurements

    Full text link
    The recent measurements of the color-suppressed modes Bˉ0→D(∗)0π0\bar B^0\to D^{(*)0}\pi^0 imply non-vanishing relative final-state interaction (FSI) phases among various Bˉ→Dπ\bar B\to D\pi decay amplitudes. Depending on whether or not FSIs are implemented in the topological quark-diagram amplitudes, two solutions for the parameters a1a_1 and a2a_2 are extracted from data using various form-factor models. It is found that a2a_2 is not universal: ∣a2(Dπ)∣=0.40−0.55|a_2(D\pi)|= 0.40-0.55 and ∣a2(D∗π)∣=0.25−0.35|a_2(D^*\pi)|= 0.25-0.35 with a relative phase of order (50−55)∘(50-55)^\circ between a1a_1 and a2a_2. If FSIs are not included in quark-diagram amplitudes from the outset, a2eff/a1effa_2^{eff}/a_1^{eff} and a2effa_2^{eff} will become smaller. The large value of ∣a2(Dπ)∣|a_2(D\pi)| compared to ∣a2eff(Dπ)∣|a_2^{eff}(D\pi)| or naive expectation implies the importance of long-distance FSI contributions to color-suppressed internal WW-emission via final-state rescatterings of the color-allowed tree amplitude.Comment: 17 pages. The Introduction is substantially revised and the order of the presentation in Sec. 2 is rearranged. To appear in Phys. Re

    Nonperturbative Determination of Heavy Meson Bound States

    Get PDF
    In this paper we obtain a heavy meson bound state equation from the heavy quark equation of motion in heavy quark effective theory (HQET) and the heavy meson effective field theory we developed very recently. The bound state equation is a covariant extention of the light-front bound state equation for heavy mesons derived from light-front QCD and HQET. We determine the covariant heavy meson wave function variationally by minimizing the binding energy Λˉ\bar{\Lambda}. Subsequently the other basic HQET parameters λ1\lambda_1 and λ2\lambda_2, and the heavy quark masses mbm_b and mcm_c can also be consistently determined.Comment: 15 pages, 1 figur

    Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    Get PDF
    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed

    Multiple Reggeon Exchange from Summing QCD Feynman Diagrams

    Full text link
    Multiple reggeon exchange supplies subleading logs that may be used to restore unitarity to the Low-Nussinov Pomeron, provided it can be proven that the sum of Feynman diagrams to all orders gives rise to such multiple regge exchanges. This question cannot be easily tackled in the usual way except for very low-order diagrams, on account of delicate cancellations present in the sum which necessitate individual Feynman diagrams to be computed to subleading orders. Moreover, it is not clear that sums of high-order Feynman diagrams with complicated criss-crossing of lines can lead to factorization implied by the multi-regge scenario. Both of these difficulties can be overcome by using the recently developed nonabelian cut diagrams. We are then able to show that the sum of ss-channel-ladder diagrams to all orders does lead to such multiple reggeon exchanges.Comment: uu-encoded latex file with 11 postscript figures (20 pages

    Discovery of gamma-ray emission from the supernova remnant Kes 17 with Fermi Large Area Telescope

    Get PDF
    We report the discovery of GeV emission at the position of supernova remnant Kes 17 by using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 17 can be clearly detected with a significance of ~12 sigma in the 1 - 20 GeV range. Moreover, a number of gamma-ray sources were detected in its vicinity. The gamma-ray spectrum of Kes 17 can be well described by a simple power-law with a photon index of ~ 2.4. Together with the multi-wavelength evidence for its interactions with the nearby molecular cloud, the gamma-ray detection suggests that Kes 17 is a candidate acceleration site for cosmic-rays.Comment: 13 pages, 3 figures, 1 table, accepted for publication in ApJ Lette
    • …
    corecore