10,378 research outputs found

    CXCL-8 Regulates Head and Neck Carcinoma Progression through NOD Signalling Pathway

    Full text link
    Head and neck squamous cell carcinoma (HNSCC) ranks sixth among the most common cancers in the world. Interlukin-8 (CXCL-8), a major role in inflammatory response and tumor microenvironment, correlates with tumor progression, metastasis and invasion. We explored CXCL-8 promotes tumor progression in different differentiation HNSCC cells. This project would apply to development on biomarker and target in HNSCC as well as provide a basis of early diagnosis and treatment for clinical. CXCL-8, NOD1 (nucleotide-binding oligomerization domain-containing protein 1) and receptor-interacting protein kinase (RIPK2) levels were detected statistically higher in patient tissue with HNSCC than in non-cancerous matched tissue (NCMT) in the microarray and qRT-PCR study, whereas NOD2 was weakly expressed. Similar results were obtained for CXCL-8, NOD1, NOD2 and RIP2 from RT-PCR and western blotting. High CXCL-8, NOD1 and RIP2 expressions were found on HNSCC patient tissue than that of NCMT, whereas NOD2 was weakly expressed. The analytical results indicate that CXCL-8 is required in NOD 1-mediated signalling pathways in HNSCC

    Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers

    Get PDF
    Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury

    CircNet: a database of circular RNAs derived from transcriptome sequencing data

    Get PDF
    Circular RNAs (circRNAs) represent a new type of regulatory noncoding RNA that only recently has been identified and cataloged. Emerging evidence indicates that circRNAs exert a new layer of post-transcriptional regulation of gene expression. In this study, we utilized transcriptome sequencing datasets to systematically identify the expression of circRNAs (including known and newly identified ones by our pipeline) in 464 RNA-seq samples, and then constructed the CircNet database (http://circnet.mbc.nctu.edu.tw/) that provides the following resources: (i) novel circRNAs, (ii) integrated miRNA-target networks, (iii) expression profiles of circRNA isoforms, (iv) genomic annotations of circRNA isoforms (e.g. 282 948 exon positions), and (v) sequences of circRNA isoforms. The CircNet database is to our knowledge the first public database that provides tissue-specific circRNA expression profiles and circRNA–miRNA-gene regulatory networks. It not only extends the most up to date catalog of circRNAs but also provides a thorough expression analysis of both previously reported and novel circRNAs. Furthermore, it generates an integrated regulatory network that illustrates the regulation between circRNAs, miRNAs and genes

    Characterization of Al-Doped ZnO Transparent Conducting Thin Film Prepared by Off-Axis Magnetron Sputtering

    Get PDF
    The off-axis sputtering technique was used to deposit Al-doped ZnO (AZO) films on glass substrates at room temperature. For the illustration of the sample position in the sputtering chamber, the value of R/r is introduced. Here, r is the radius of AZO target and R is the distance between the sample and the center of substrate holder. A systematic study for the effect of deposition parameters on structural, optical, and electrical properties of AZO films has been investigated in detail. As the sample position of R/r is fixed at 1.8, it is found that the as-deposited AZO film has relatively low resistivity of 2.67 × 10−3 Ω-cm and high transmittance above 80% in the visible region. Additionally, after rapid thermal annealing (RTA) at 600°C with N2 atmosphere, the resistivity of this AZO film can be further reduced to 1.19 × 10−3 Ω-cm. This indicates the AZO films prepared by off-axis magnetron sputtering and treated via the appropriate RTA process have great potential in optoelectronic applications

    Antigen retrieval pre-treatment causes a different expression pattern of Cav3.2 in rat and mouse spinal dorsal horn

    Get PDF
    Cav3 channels consist of three isoforms, Cav3.1 (α1G), Cav3.2 (α1H), and Cav3.3 (α1I), which produce low-threshold spikes that trigger burst firings in nociceptive neurons of the spinal dorsal horn (SDH) and dorsal root ganglion (DRG). Although Cav3.2 plays a crucial role in pathological pain, its distribution in SDH still remains controversial. One study showed that Cav3.2 is ubiquitously expressed in neurons, but another study implied that Cav3.2 is expressed restricted to astrocytes. To unravel these discrepancies, we used methods of immunohistochemistry either with or without antigen retrieval (AR) pre-treatment to detect Cav3 in SDH and DRG from both rats and mice. Moreover, Cav3.2 mRNA was detected in mice SDH using in situ hybridization. We found that the expression pattern of Cav3.2 but not Cav3.1 and Cav3.3 in SDH were largely different with or without AR pre-treatment, which showed a neuron-like and an astrocyte-like appearance, respectively. Double staining further demonstrated that Cav3.2 was mainly co-stained with the neuronal marker NeuN in the presence of AR but was with glial fibrillary acidic protein (GFAP, marker for astrocytes) in the absence of AR pre-treatment. Importantly, Cav3.2 mRNA was mainly co-localized with Cav3.2 but not GFAP. Together, our findings indicate that AR pre-treatment or not impacts the expression pattern of Cav3.2, which may make a significant contribution to the future study of Cav3.2 in SDH
    • …
    corecore