410 research outputs found
Oxalate formation under the hyperarid conditions of the Atacama desert as a mineral marker to provide clues to the source of organic carbon on Mars
In this study, we report the detection and characterization of the organic minerals weddellite
(CaC2O4 · 2H2O) and whewellite (CaC2O4 · H2O) in the hyperarid, Mars-like conditions of the Salar Grande,
Atacama desert, Chile. Weddellite and whewellite are commonly of biological origin on Earth and have great
potential for preserving records of carbon geochemistry and possible biological activity on Mars if they
are present there. Weddellite and whewellite have been found as secondary minerals occurring inside the
lower detrital unit that fills the Salar Grande basin. The extremely low solubility of most oxalate minerals
inhibits detection of oxalate by ion chromatography (IC). Crystalline oxalates, including weddellite and
whewellite, were detected by X-ray diffraction (XRD). The association of weddellite with surface biota and its
presence among subsurface detrital materials suggest the potential of a biological origin for Salar Grande
weddellite and whewellite. In this regard, biological activity is uniquely capable of concentrating oxalates
at levels detectable by XRD. The complementary detection of oxalate-bearing phases through IC in the upper
halite-rich unit suggests the presence of a soluble oxalate phase in the basin that is not detected by XRD.
The formation, transport, and concentration of oxalate in the Salar Grande may provide a geochemical
analogue for oxalate-bearing minerals recently suggested to exist on Mars
Sodium atoms and clusters on graphite: a density functional study
Sodium atoms and clusters (N<5) on graphite (0001) are studied using density
functional theory, pseudopotentials and periodic boundary conditions. A single
Na atom is observed to bind at a hollow site 2.45 A above the surface with an
adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates
a flat potential energy surface. Increased Na coverage results in a weak
adsorbate-substrate interaction, which is evident in the larger separation from
the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The
binding is weak for Na_2, which has a full valence electron shell. The presence
of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and
both Na_4 and Na_5 are distorted from planarity. The calculated formation
energies suggest that clustering of atoms is energetically favorable, and that
the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite
than in the gas phase. Analysis of the lateral charge density distributions of
Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
Reaction Diffusion Models in One Dimension with Disorder
We study a large class of 1D reaction diffusion models with quenched disorder
using a real space renormalization group method (RSRG) which yields exact
results at large time. Particles (e.g. of several species) undergo diffusion
with random local bias (Sinai model) and react upon meeting. We obtain the
large time decay of the density of each specie, their associated universal
amplitudes, and the spatial distribution of particles. We also derive the
spectrum of exponents which characterize the convergence towards the asymptotic
states. For reactions with several asymptotic states, we analyze the dynamical
phase diagram and obtain the critical exponents at the transitions. We also
study persistence properties for single particles and for patterns. We compute
the decay exponents for the probability of no crossing of a given point by,
respectively, the single particle trajectories () or the thermally
averaged packets (). The generalized persistence exponents
associated to n crossings are also obtained. Specifying to the process or A with probabilities , we compute exactly the exponents
and characterizing the survival up to time t of a domain
without any merging or with mergings respectively, and and
characterizing the survival up to time t of a particle A without
any coalescence or with coalescences respectively.
obey hypergeometric equations and are numerically surprisingly close to pure
system exponents (though associated to a completely different diffusion
length). Additional disorder in the reaction rates, as well as some open
questions, are also discussed.Comment: 54 pages, Late
Dynamics of multipartite quantum correlations under decoherence
Quantum discord is an optimal resource for the quantification of classical
and non-classical correlations as compared to other related measures. Geometric
measure of quantum discord is another measure of quantum correlations.
Recently, the geometric quantum discord for multipartite states has been
introduced by Jianwei Xu [arxiv:quant/ph.1205.0330]. Motivated from the recent
study [Ann. Phys. 327 (2012) 851] for the bipartite systems, I have
investigated global quantum discord (QD) and geometric quantum discord (GQD)
under the influence of external environments for different multipartite states.
Werner-GHZ type three-qubit and six-qubit states are considered in inertial and
non-inertial settings. The dynamics of QD and GQD is investigated under
amplitude damping, phase damping, depolarizing and flipping channels. It is
seen that the quantum discord vanishes for p>0.75 in case of three-qubit GHZ
states and for p>0.5 for six qubit GHZ states. This implies that multipartite
states are more fragile to decoherence for higher values of N. Surprisingly, a
rapid sudden death of discord occurs in case of phase flip channel. However,
for bit flip channel, no sudden death happens for the six-qubit states. On the
other hand, depolarizing channel heavily influences the QD and GQD as compared
to the amplitude damping channel. It means that the depolarizing channel has
the most destructive influence on the discords for multipartite states. From
the perspective of accelerated observers, it is seen that effect of environment
on QD and GQD is much stronger than that of the acceleration of non-inertial
frames. The degradation of QD and GQD happens due to Unruh effect. Furthermore,
QD exhibits more robustness than GQD when the multipartite systems are exposed
to environment.Comment: 15 pages, 4 figures, 4 table
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
- …