5 research outputs found

    Quantification of carbonate carbon in aerosol filter samples using a modified thermal/optical carbon analyzer (M-TOCA)

    No full text
    Measurement of carbon dioxide (CO2) gas evolved from acidification is a method to quantify carbonate carbon (CC) in aerosols collected on quartz fiber-filters. This paper describes the installation of an add-on device in a DRI Model 2001 Thermal Optical reflectance (TOR)/Thermal Optical Transmittance (TOT) Carbon Analyzer (M-TOCA) to facilitate a direct CC measurement. In each run, a maximum of 20 filter punches (each of 0.5 cm(2)) were acidified with 1 mL of 20% v/v phosphoric (V) acid in a vial under a 100% helium gas environment. The CO2 evolved was reduced to methane (CH4) and detected by a flame ionization detector (FID). The optimum reaction kinetics were obtained under an operational temperature of 40 degrees C and ultrasonic agitation. Method precisions were +/- 3.5% on average for carbonate standards ranging from 3.0 to 60.0 mu g and +/- 3.8% on average for ambient samples in masses ranging from 0.30 to 56.0 mu g respectively. Method accuracy was on average 91.9%, ranging from 81.4 to 102.1%. Minimum detection limit (MDL) of the M-TOCA method was 0.048 mu g cm(-2), corresponding to an ambient concentration of 0.098 mu g m(-3) for a sampled volume of air of 7.2 m(3). The MDL is &gt;22 times lower than the value obtained using the novel method with a regular TOCA. Comparison studies on standards and ambient samples have demonstrated that the two methods do not yield systematic differences in concentrations of the carbonate. The lower MDL value provided by the M-TOCA allows a simple, precise and accurate measurement for ambient samples having a low CC concentration.</p

    Characterization of volatile organic compounds at a roadsideenvironment in Hong Kong: An investigation of influences after airpollution control strategies

    No full text
    Vehicular emission is one of the important anthropogenic pollution sources for volatile organic compounds (VOCs). Four characterization campaigns were conducted at a representative urban roadside environment in Hong Kong between May 2011 and February 2012. Carbon monoxide (CO) and VOCs including methane (CH4), non-methane hydrocarbons (NMHCs), halocarbons, and alkyl nitrates were quantified. Both mixing ratios and compositions of the target VOCs show ignorable seasonal variations. Except CO, liquefied petroleum gas (LPG) tracers of propane, i-butane and n-butane are the three most abundant VOCs, which increased significantly as compared with the data measured at the same location in 2003. Meanwhile, the mixing ratios of diesel- and gasoline tracers such as ethyne, alkenes, aromatics, halogenated, and nitrated hydrocarbons decreased by at least of 37%. The application of advanced multivariate receptor modeling technique of positive matrix factorization (PMF) evidenced that the LPG fuel consumption is the largest pollution source, accounting for 60 ± 5% of the total quantified VOCs at the roadside location. The sum of ozone formation potential (OFP) for the target VOCs was 300.9 μg-O3 m−3, which was 47% lower than the value of 567.3 μg-O3 m−3 measured in 2003. The utilization of LPG as fuel in public transport (i.e., taxis and mini-buses) contributed 51% of the sum of OFP, significantly higher than the contributions from gasoline- (16%) and diesel-fueled (12%) engine emissions. Our results demonstrated the effectiveness of the switch from diesel to LPG-fueled engine for taxis and mini-buses implemented by the Hong Kong Special Administrative Region (HKSAR) Government between the recent ten years, in additional to the execution of substitution to LPG-fueled engine and restrictions of the vehicular emissions in compliance with the updated European emission standards

    ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19

    No full text
    The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use

    Measurement of τ

    No full text
    corecore