293 research outputs found

    Improper Ferroelectric Polarisation in a Perovskite driven by Inter-site Charge Transfer and Ordering

    Get PDF
    It is of great interest to design and make materials in which ferroelectric polarisation is coupled to other order parameters such as lattice, magnetic and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realised. Here we report detailed crystallographic studies of a novel perovskite HgA^{\textbf{A}}Mn3A’^{\textbf{A'}}_{3}Mn4B^{\textbf{B}}_{4}O12_{12} that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A' and B-sites, which are themselves driven by a highly unusual MnA^{A'}-MnB^B inter-site charge transfer. The inherent coupling of polar, charge, orbital and hence magnetic degrees of freedom, make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.Comment: 9 pages, 7 figure

    High-temperature molecular beam epitaxy of hexagonal boron nitride with high active nitrogen fluxes

    Get PDF
    Hexagonal boron nitride (hBN) has attracted much attention as a key component in van der Waals heterostructures and as a wide band gap material for deep-ultraviolet devices. We have recently demonstrated plasma-assisted molecular beam epitaxy (PA-MBE) of hBN layers on substrates of highly oriented pyrolytic graphite at high substrate temperatures of ~1400 oC. The current paper will present data on the high-temperature PA-MBE growth of hBN layers using a high-efficiency RF nitrogen plasma source. Despite the more than 3-fold increase in nitrogen flux with this new source, we saw no significant increase in the growth rates of the hBN layers, indicating that the growth rate of hBN layers is controlled by the boron arrival rate. The hBN thickness increases to ~90 nm with decrease in the growth temperature to 1080 oC. However, the decrease in the MBE temperature led to a deterioration of the optical properties of the hBN. The optical absorption data indicate that an increase in the active nitrogen flux during the MBE process improves the optical properties of hBN and suppresses defect related optical absorption in the energy range 5.0-5.5 eV

    An atomic carbon source for high temperature molecular beam epitaxy of graphene

    Get PDF
    We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source

    High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire

    Get PDF
    The discovery of graphene and its remarkable electronic properties has provided scientists with a revolutionary material system for electronics and optoelectronics. Here, the authors investigate molecular beam epitaxy (MBE) as a growth method for graphene layers. The standard dual chamber GENxplor has been specially modified by Veeco to achieve growth temperatures of up to 1850 _C in ultrahigh vacuum conditions and is capable of growth on substrates of up to 3 in. in diameter. To calibrate the growth temperatures, the authors have formed graphene on the Si-face of SiC by heating wafers to temperatures up to 1400 _C and above. To demonstrate the scalability, the authors have formed graphene on SiC substrates with sizes ranging from 10 _ 10mm2 up to 3-in. in diameter. The authors have used a carbon sublimation source to grow graphene on sapphire at substrate temperatures between 1000 and 1650 _C (thermocouple temperatures). The quality of the graphene layers is significantly improved by growing on hexagonal boron nitride (h-BN) substrates. The authors observed a significant difference in the sticking coefficient of carbon on the surfaces of sapphire and h-BN flakes. Our atomic force microscopy measurements reveal the formation of an extended hexagonal moir_e pattern when our MBE layers of graphene on h-BN flakes are grown under optimum conditions. The authors attribute this moir_e pattern to the commensurate growth of crystalline graphene on h-BN

    Graphene nanoribbons with hBN passivated edges grown by high-temperature molecular beam epitaxy

    Get PDF
    Integration of graphene and hexagonal boron nitride (hBN) in lateral heterostructures has provided a route to broadly engineer the material properties by quantum confinement of electrons or introduction of novel electronic and magnetic states at the interface. In this work we demonstrate lateral heteroepitaxial growth of graphene nanoribbons (GNRs) passivated by hBN using high-temperature molecular beam epitaxy (HT-MBE) to grow graphene in oriented hBN trenches formed ex-situ by catalytic nanoparticle etching. High-resolution atomic force microscopy (AFM) reveals that GNRs grow epitaxially from the etched hBN edges, and merge to form a GNR network passivated by hBN. Using conductive AFM we probe the nanoscale electrical properties of the nanoribbons and observe quasiparticle interference patterns caused by intervalley scattering at the graphene/hBN interface, which carries implications for the potential transport characteristics of hBN passivated GNR devices

    Lattice-matched epitaxial graphene grown on boron nitride

    Get PDF
    Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band-gap but requires the formation of highly strained material and has not hitherto been realised. We demonstrate that aligned, lattice-matched graphene can be grown by molecular beam epitaxy using substrate temperatures in the range 1600-1710 °C and co-exists with a topologically-modified moiré pattern, and with regions of strained graphene which have giant moiré periods up to ~80 nm. Raman spectra reveal narrow red-shifted peaks due to isotropic strain, while the giant moiré patterns result in complex splitting of Raman peaks due to strain variations across the moiré unit cell. The lattice-matched graphene has a lower conductance than both the Frenkel-Kontorova-type domain walls, and also the topological defects where they terminate. We relate these results to theoretical models of band-gap formation in graphene/boron nitride heterostructures

    High-temperature molecular beam epitaxy of hexagonal boron nitride layers

    Get PDF
    The growth and properties of hexagonal boron nitride (hBN) have recently attracted much attention due to applications in graphene-based monolayer thick 2D-structures and at the same time as a wide band gap material for deep-ultraviolet device (DUV) applications. We present our results on the high-temperature plasma-assisted molecular beam epitaxy (PA-MBE) of hBN monolayers on highly oriented pyrolytic graphite (HOPG) substrates. Our results demonstrate that PA-MBE growth at temperatures ~1390 oC can achieve mono- and few-layer thick hBN with a control of the hBN coverage and atomically flat hBN surfaces which is essential for 2D applications of hBN layers. The hBN monolayer coverage can be reproducible controlled by the PA-MBE growth temperature, time and B:N flux ratios. Significantly thicker hBN layers have been achieved at higher B:N flux ratios. We observed a gradual increase of the hBN thickness from 40 to 70 nm by decreasing the growth temperature from 1390 oC to 1080 oC. However, by decreasing the MBE growth temperature below 1250 oC, we observe a rapid degradation of the optical properties of hBN layers. Therefore, high-temperature PA-MBE, above 1250 oC, is a viable approach for the growth of high-quality hBN layers for 2D and DUV applications

    Spontaneous Inter-layer Coherence in Double-Layer Quantum-Hall Systems I: Charged Vortices and Kosterlitz-Thouless Phase Transitions

    Full text link
    At strong magnetic fields double-layer two-dimensional-electron-gas systems can form an unusual broken symmetry state with spontaneous inter-layer phase coherence. In this paper we explore the rich variety of quantum and finite-temperature phase transitions associated with this broken symmetry. We describe the system using a pseudospin language in which the layer degree-of-freedom is mapped to a fictional spin 1/2 degree-of-freedom. With this mapping the spontaneous symmetry breaking is equivalent to that of a spin 1/2 easy-plane ferromagnet. In this language spin-textures can carry a charge. In particular, vortices carry e/2 electrical charge and vortex-antivortex pairs can be neutral or carry charge e. We derive an effective low-energy action and use it to discuss the charged and collective neutral excitations of the system. We have obtained the parameters of the Landau-Ginzburg functional from first-principles estimates and from finite-size exact diagonalization studies. We use these results to estimate the dependence of the critical temperature for the Kosterlitz-Thouless phase transition on layer separation.Comment: 56 pages, 19 figures available upon request at [email protected]. RevTex 3.0. IUCM94-00

    Emerging strengths in Asia Pacific bioinformatics

    Get PDF
    The 2008 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998, was organized as the 7th International Conference on Bioinformatics (InCoB), jointly with the Bioinformatics and Systems Biology in Taiwan (BIT 2008) Conference, Oct. 20–23, 2008 at Taipei, Taiwan. Besides bringing together scientists from the field of bioinformatics in this region, InCoB is actively involving researchers from the area of systems biology, to facilitate greater synergy between these two groups. Marking the 10th Anniversary of APBioNet, this InCoB 2008 meeting followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India) and Hong Kong. Additionally, tutorials and the Workshop on Education in Bioinformatics and Computational Biology (WEBCB) immediately prior to the 20th Federation of Asian and Oceanian Biochemists and Molecular Biologists (FAOBMB) Taipei Conference provided ample opportunity for inducting mainstream biochemists and molecular biologists from the region into a greater level of awareness of the importance of bioinformatics in their craft. In this editorial, we provide a brief overview of the peer-reviewed manuscripts accepted for publication herein, grouped into thematic areas. As the regional research expertise in bioinformatics matures, the papers fall into thematic areas, illustrating the specific contributions made by APBioNet to global bioinformatics efforts
    corecore