2,604 research outputs found

    Degree-degree Correlated Low-density Parity-check Codes Over a Binary Erasure Channel

    Full text link
    Most existing works on analyzing the performance of a random ensemble of low-density parity-check (LDPC) codes assume that the degree distributions of the two ends of a randomly selected edge are independent. In the paper, we take one step further and consider ensembles of LDPC codes with degree-degree correlations. For this, we propose two methods to construct an ensemble of degree-degree correlated LDPC codes. We then derive a system of density evolution equations for such degree-degree correlated LDPC codes over a binary erasure channel (BEC). By conducting extensive numerical experiments, we show how the degree-degree correlation affects the performance of LDPC codes. Our numerical results show that LDPC codes with negative degree-degree correlation could improve the maximum tolerable erasure probability. Moreover, increasing the negative degree-degree correlation could lead to better unequal error protection (UEP) design.Comment: accepted by the 2023 IEEE International Symposium on Information Theory (ISIT

    An Architectural Approach to the Design and Analysis of Cyber-Physical Systems

    Get PDF
    This paper presents an extension of existing software architecture tools to model physical systems, their interconnections, and the interactions between physical and cyber components. A new CPS architectural style is introduced to support the principled design and evaluation of alternative architectures for cyber-physical systems (CPSs). The implementation of the CPS architectural style in AcmeStudio includes behavioral annotations on components and connectors using either finite state processes (FSP) or linear hybrid automata (LHA) with plug-ins to perform behavior analysis using the Labeled Transition System Analyzer (LTSA) or Polyhedral Hybrid Automata Verifier (PHAVer), respectively. The CPS architectural style and analysis plug-ins are illustrated with an example
    • …
    corecore