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Abstract: This paper presents an extension of existing software architecture tools
to model physical systems, their interconnections, and the interactions between
physical and cyber components. A new CPS architectural style is introduced to
support the principled design and evaluation of alternative architectures for cyber-
physical systems (CPSs). The implementation of the CPS architectural style in
AcmeStudio includes behavioral annotations on components and connectors using
either finite state processes (FSP) or linear hybrid automata (LHA) with plug-ins to
perform behavior analysis using the Labeled Transition System Analyzer (LTSA) or
Polyhedral Hybrid Automata Verifier (PHAVer), respectively. The CPS architectural
style and analysis plug-ins are illustrated with an example.
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1 Introduction

Today’s models and methods for analysis and design of cyber-physical systems (CPS) are typi-
cally fragmented along lines defined by disparate mathematical formalisms and dissimilar method-
ologies in engineering and computer science. While separation of concerns is needed for tractabil-
ity, such analytical approaches often impose an early separation between the cyber and physical
features of the system design, making it difficult to assess the impacts and tradeoffs of alterna-
tives that cut across the boundaries between these domains.

This paper presents extensions to software architectural descriptions to encompass the full
range of elements that comprise cyber-physical systems. Our goal is to create an extensible
framework within which a comprehensive set of design tools can be created. As first steps in
this direction, this paper presents a new CPS architectural style and behavioral annotations and
plug-ins for verification.

The following section reviews previous work on software architectures. Section 3 then presents
a CPS architectural style as the basis for developing architectural constructs for specific appli-
cation domains. Section 4 illustrates the application of the components and connectors in the
CPS architectural style for a simple example. Section 5 describes how behavioral analysis can
be carried out with the help of annotations and plugins. Section 6 illustrates behavior verification
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for the example introduced in Section 4. The concluding section summarizes the contributions
of this paper and discusses the next steps in this research.

2 Previous Work

Over the past decade software architecture has emerged as one of the primary techniques for dis-
ciplined engineering of large-scale software systems. A software architecture typically models
a system as a graph of components and connectors, in which the components represent prin-
cipal computational elements of a system’s run-time structure and the connectors represent the
pathways of communication between components [SG96, PW02, BCK03]. These elements are
annotated with properties that characterize their abstract behavior and facilitate reasoning about
system-level design tradeoffs.

There has been considerable research and development in architecture description languages
(ADLs) and tools to support their analysis and realization as code [MT00, DHT02, GS06]. Stan-
dardized notations such as UML 2.0 [RJB04], SysML [SysML] and AADL [AADL] provide
modeling vocabularies of components, connectors and properties. Additionally, a number of
researchers have investigated methods for modeling architectural behavior, for example as pro-
tocols characterized by process algebras or state machines [AAG95, MK06]. These notations
are supported by tools that provide graphical editing and viewing, hierarchical development (in
which components may be refined as more detailed architectures) [MR97], checking for compo-
nent compatibility or substitutability [AG97], and evaluation of quality attributes such as perfor-
mance, reliability, and security [GS06, RM04, MI04, SG98]. Software architectures also support
reuse of design expertise and code infrastructure.

In many cases an architecture of a system fits within a common family, referred to as an
architectural style [SG96]. An architectural style defines a set of component and connector types,
together with constraints that prescribe how elements can be composed. Some ADLs allow one to
define architectural styles, develop systems in that style, and provide tools for checking whether
a system is compliant with a given style [AAG95, GAO94, GMW00, SG04].

Software architecture has been applied effectively to numerous embedded and control systems.
For instance, architecture description languages such as Meta-H and AADL have been used to
model avionics systems, automotive control systems, and other applications [BV93, HuF07].

3 A CPS Architectural Style

Architectures typically represent systems at a higher level than simulation models, which rep-
resent the details of a particular system implementation. Although architectural modeling has
been used in specific domains to incorporate physical elements as components, there is currently
no way of treating cyber and physical elements equally in a general fashion. This is because
the components and connectors in software architectural styles are inadequate for representing
the types of physical components found in CPS and their interactions with cyber entities. This
section presents extensions that allow both physical and cyber elements to be modeled together
in a CPS architectural style.

We use the Acme ADL [GMW00], which has strong support for defining flexible architectural
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styles. In Acme, an architectural style is represented as a family of element types that follow
certain rules and structure in terms of what kind of components and connectors can be present in
the system and the manner in which they can be connected with each other. A general family can
be refined into an application-specific family by adding additional elements and rules [DRRS99].

The challenge in defining an architectural style is to find a balance between specificity and
generality. For the CPS domain we focus on embedded monitoring and control systems. Our
goal is to create a family of general components and connectors that can serve as the foundation
for application-specific styles in this broad domain. Towards this end we define three related
families pertaining to the cyber domain, the physical domain, and their interconnection.

3.1 Cyber family

The cyber side of CPS is the traditional domain for ADLs. The following components and con-
nectors provide support for standard real-time monitoring and control applications. The compo-
nent types are:

• Data Stores: These components store data as an interface between the computational el-
ements in the system. In simple systems, these could be just passive memory blocks. In
complex systems there could be further details specifying what components can read and
write to the data store components.

• Computation: Computation components operate on and update data posted in data store
components. This includes components that perform filtering, state estimation, and con-
trol.

• IO Interfaces: These components perform the computations and timing functions required
to sense and control the physical world. This would include, for example, smart sensor
software that processes raw sensor data.

In addition to the computational aspects of the software, it is important to represent the com-
munication elements in the system to reason about timing between software elements and how
this affects the physical behavior of the complete system. We represent two major types of cy-
ber connectors, a call-return connector representing one-to-one communication and a publish-
subscribe connector representing one-to-many. Each of these types can be further specialized to
represent particular communication protocols and network characteristics.

3.2 Physical family

There are several challenges in developing a suitable representation of the physical side of cyber-
physical systems at the architectural level. Architectural models should not have all the details
required for a full simulation of the physical dynamics. At the same time, the architectural com-
ponents and connectors should correspond to intuitive notions of physical dynamics in the same
way that cyber components and connectors correspond to elements of computational systems. To
achieve this balance, we introduce components and connectors based on an energy view of phys-
ical systems. This provides a domain-independent perspective, including the ability to represent
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interactions between different physical domains and the possibility to specify system proper-
ties such as power flow and causality. This is similar to the perspectives taken in bond graphs
[GaS96] and Lagrangian mechanics [JeS99], where power-conjugated variables (effort and flow)
describe signal flows between sources, energy storage elements, and dissipative elements.

The physical component types are:

• Sources: A source component specifies source elements that deliver power to other com-
ponents. These components have only output ports because they deliver effort or flow into
the system.

• Energy storage: An energy storage component models dynamic elements or subsystems
that store energy, such as components that have capacitive and inductive properties in
electrical systems. Ports on these components allow power transfer to other subsystems.

• Physical transducers: Transducers represent power transfer or energy conversion between
different types of physical domains. These components are particularly useful in modeling
multi-domain systems with, for example, electromechanical devices that transform energy
between the electrical and mechanical domains.

The physical connector types are:

• Power flow: Power flow connectors model bidirectional interactions between physical
components, including dissipative interactions. These connectors lead to dynamic cou-
pling between components.

• Shared variable: This connector indicates that the variables in two components are iden-
tical. There is no directionality associated with this connector.

• Measurement: Measurement connectors indicate variables that are determined by one
physical component and used as an input in another physical component. Thus, these
connectors are directional and correspond to connections in traditional block diagrams
(e.g., signal lines in Simulink).

3.3 Cyber-physical interface family

The cyber-physical interface family inherits all the elements from the cyber and physical fami-
lies and adds new elements that bridge the gap between computational and physical systems. To
model the interactions between the cyber and the physical worlds, we introduce two directed con-
nector types, P2C connector (physical-to-cyber) and C2P connector (cyber-to-physical). Simple
sensors can be modeled as P2C connectors and simple actuators can be modeled as C2P connec-
tors.

For more complex interfaces between cyber and physical elements in a CPS, we define the P2C
transducer and C2P transducer components, which have ports to cyber elements on one side and
ports to physical elements on the other side. Devices are modeled as P2C/C2P transducers if they
do more than a simple translation between cyber and physical domains, e.g., intelligent sensor
nodes.
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4 Example

To illustrate the architectural modeling using the CPS architectural style, consider a temperature
control system for two zones (rooms) illustrated in Fig. 1. The zones have temperatures T1 and
T2 respectively, and the temperature of the ambient environment is Ta. The zones retain heat
with thermal capacities C1 and C2, respectively, and lose heat to the ambient environment with
thermal resistivities R1 and R2 respectively. Zone 2 is heated through a shared wall with thermal
resistivity Rw with Zone 1. The thermostat is physically located in Zone 1, so it can only read the
temperature in Zone 1. The furnace can be powered on or off manually. When the furnace is on,
the thermostat determines whether or not the furnace should heat the room and turns a blower
that forces hot air into the room on or off accordingly. The goal is to maintain the measured
temperature of Zone 1 close to the thermostat setpoint.

Figure 1: Illustration of thermal example.

Figure 2 shows the architecture of this system in AcmeStudio [SG04]. The right hand pane
shows the cyber, physical and the cyber-physical interface families. Each zone is modeled as an
energy storage component. The ambient temperature is modeled as a source component since it
is independent of the room dynamics.

The top right corner of the canvas shows a bounding box that corresponds to the thermostat.
The box contains a temperature sensor that senses the temperature of Zone 1 and broadcasts
it on a communication channel. A temperature estimator then reads the temperature from the
communication channel and updates the temperature state variable. The furnace estimator reads
the temperature and keeps updating the furnace state. The temperature controller is the part
of the software that keeps track of when the furnace estimator changes the furnace state and
communicates these changes to the furnace as commands to turn the heating on or off.

The furnace comprises a furnace actuator component that receives commands sent by the
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Figure 2: Architectural modeling of a temperature control system using cyber-physical family.

temperature controller in the thermostat and accordingly turns the corresponding heating element
(heat coil) on or off. Finally, a transducer element called SoftSwitch captures the manual on/off
signal and communicates it to the furnace actuator software element to turn the heating element
on or off.

Zone 1, Zone 2 are modeled as energy storage components and the ambient environment
as a source. The connectors between ambient and the two zones are directional input-output
connectors capturing the one-way coupling, while the connector between the two zones is a
bidirectional shared-variable connector that captures the bidirectional coupling.

5 Behavioral Annotations

The architectural elements describe only the structural information about a system. To be able
to do meaningful formal analysis on the system behavior, one must annotate the architecture
with behavioral information. In Acme ADL, the behavioral annotation can be implemented via
properties to capture the behavioral information. We have implemented the annotations for two
types of behavioral modeling frameworks - Finite State Processes [MK06] and Linear Hybrid
Automata [Hen96].

We have developed plug-ins as extension points of AcmeStudio, which will display only the
relevant information pertaining to the element or system selected by the user. We have also built
into the plugins the ability to generate analyzable text files from these properties. The plug-ins
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Figure 3: Behavioral analysis using AcmeStudio plugins

traverse the architecture, gather the relevant information distributed throughout the structure and
generate a text file that is analyzed by the relevant tool. Figure 3 shows a schematic of this
analysis flow. In our case, we have developed one plug-in for FSP that generates a file that can
be analyzed by the Labelled Transition System Analyser [MK06] and another plug-in for LHA
that generates a file that can be analyzed by Polyhedral Hybrid Automaton Verifyer (PHAVer)
[Fre05].

6 Behavioral Verification

Consider the example from Section 4. The goal is to maintain the Zone 1 temperature close to the
thermostat setpoint. The furnace is a memoryless passive element that receives commands from
thermostat and the local manual power on/off switch. Thus, the furnace can be in one of the three
states - poweredOff, poweredOn (but not heating) and Heating. Whenever it is locally powered
on, it goes by default into the poweredOn state. Suppose the thermostat only sends commands
to the furnace turn the heat on (off) and doesn’t cross-check to see whether the furnace actually
responds. If the thermostat issues a command to the furnace to turn the heat on while the furnace
is locally powered off, the furnace misses the command. If the furnace is powered back on, it
goes by default into the poweredOn state and won’t turn the heat on until it receives the next heat
on command from the thermostat. But the thermostat won’t issue another command because it
has already issued a heat-on command and is waiting for the temperature to increase to the point
that a heat-off command needs to be issued.

We want our analysis to catch this error, and would also like to propose a remedy. We start
from the more basic, discrete-only FSP analysis. This can be done by posing the question as a
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liveness check – if the thermostat issues a command to start heat, will the temperature of the room
eventually rise? Liveness properties can be easily analyzed in LTSA, which not only catches this
bug, but also gives a counterexample-trace indicating where the liveness requirement fails. We
immediately catch the error that the thermostat is unaware of the furnace state and one proposed
remedy would be to have the furnace report its state to the thermostat. This corrected architecture
is shown in Fig. 2 with an added shutdown notification connector between the furnace and the
thermostat.

This solution might be difficult to implement if the furnace is a dumb device that can only
receive commands and cannot transmit acknowledgments. Fortunately, there is another solution,
which is to have the thermostat check to see if the room temperature has actually risen to the
expected level after a specified timeout interval. If the temperature has not risen, the heat-on
command is resent. The success of this strategy depends on the choice of the timeout period
with respect to the rate of change of room temperature while heating and cooling. Neither the
real time clock nor the rates of change of temperature can be represented in the purely discrete
FSP model, however. So we turn to LHA, where both of these behaviors can be represented.
With LHA analysis done in PHAVer, we can find out the good range of the timeout period given
the min and max ranges of rates of change of temperature while heating and cooling.

7 Discussion

This paper introduces tools for the modeling and analysis of cyber-physical systems at the ar-
chitectural level. A CPS architectural style is proposed along with tools for annotating CPS
architectures with behavioral descriptions modeled as finite state processes and linear hybrid au-
tomata. The CPS architectural style presented in this paper provides a unifying framework to
develop new methods for optimizing designs with respect to performance measures that charac-
terize important features of the system behaviors. We are currently developing the capability to
offer different views of a CPS architecture, where each view can correspond to a particular type
of mathematical abstraction and different performance measures can be associated with different
views. The collection of views and associated performance measures leads to a network of design
optimization problems, which are interconnected through shared variables and constraints. We
are also developing methods for formulating and solving these interconnected design problems
as a basis for a comprehensive approach to the analysis and design of cyber-physical systems.
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