6 research outputs found

    Design and analysis of active fluid-and-cellular solid composites for controllable stiffness robotic elements

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Includes bibliographical references (leaves 107-108).The purpose of this thesis is to investigate the use of a new class of materials for realizing soft robots. Specifically, meso-scale composites--composed of cellular solids impregnated with active fluids-were be designed to have controllable stiffness to take the form of a continuous body of a soft robot. This represents an improvement compared to past efforts in soft robotics, which often involved modifying the infrastructure of current, rigid robots to yield softer ones. This latter approach often faced the challenges of developing actuators that were "soft" but still discrete, and were limited in performance. In contrast, the controllable-stiffness composites proposed in this thesis eliminate the need for multiple actuators; a single structure can transition between various states to serve as both rigid, load-bearing components as well as morphable, compliant ones. While the vast range of fluid-foam combinations for such an application have yet to be explored, the work presented here focuses on a specific composite: open-cell polyurethane foam impregnated with wax. This type of composite can be thermally activated to exhibit both solid and nearly fluid states (while the wax can be melted to become a fluid, the foam holds the composite together as a pseudo-solid). This thesis discusses the research that has been conducted to 1) characterize the mechanical properties of wax-foam composites as well as 2) investigate possible ways in which the composites can be used as robotic components.by Nadia G. Cheng.S.M

    Design and analysis of jammable granular systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 102-110).Jamming--the mechanism by which granular media can transition between liquid-like and solid-like states-has recently been demonstrated as a variable strength and stiffness mechanism in a range of applications. As a low-cost and simple means for achieving tunable mechanical properties, jamming has been used in systems ranging from architectural to medical ones. This thesis explores the utility of jamming for robotic manipulation applications, both at a fundamental level of understanding how granular properties affect the performance of jammed systems, and at a more applied level of designing functional robotic components. Specifically, the purpose of this thesis was to enable engineers to design jammable robotic systems in a principled manner. Three parallel yet related studies were conducted to work towards this goal. First, an experimental analysis was conducted to determine whether the bulk shear strength of granular systems can be correlated with grain properties-such as ones concerning shape, size distribution, and surface texture-extracted from 2D silhouettes of grains. Second, a novel medium composed of a mixture of hard and soft spheres was proposed to achieve variable strength and stiffness properties as a function of confining pressure; experimental analysis was conducted on this system with not only varying confining pressures but also varying mixing ratios of hard and soft spheres. Finally, the design and analysis of a novel jammable robotic manipulator-with the goal of maximizing both the strength and articulation of the system-is presented.by Nadia G. Cheng.Ph.D

    Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media

    Get PDF
    Hyper-redundant manipulators can be fragile, expensive, and limited in their flexibility due to the distributed and bulky actuators that are typically used to achieve the precision and degrees of freedom (DOFs) required. Here, a manipulator is proposed that is robust, high-force, low-cost, and highly articulated without employing traditional actuators mounted at the manipulator joints. Rather, local tunable stiffness is coupled with off-board spooler motors and tension cables to achieve complex manipulator configurations. Tunable stiffness is achieved by reversible jamming of granular media, which-by applying a vacuum to enclosed grains-causes the grains to transition between solid-like states and liquid-like ones. Experimental studies were conducted to identify grains with high strength-to-weight performance. A prototype of the manipulator is presented with performance analysis, with emphasis on speed, strength, and articulation. This novel design for a manipulator-and use of jamming for robotic applications in general-could greatly benefit applications such as human-safe robotics and systems in which robots need to exhibit high flexibility to conform to their environments.United States. Defense Advanced Research Projects Agency (Maximum Mobility and Manipulation Program

    Jamming user interfaces

    No full text
    Malleable and organic user interfaces have the potential to enable radically new forms of interactions and expressiveness through flexible, free-form and computationally controlled shapes and displays. This work, specifically focuses on particle jamming as a simple, effective method for flexible, shape-changing user interfaces where programmatic control of material stiffness enables haptic feedback, deformation, tunable affordances and control gain. We introduce a compact, low-power pneumatic jamming system suitable for mobile devices, and a new hydraulic-based technique with fast, silent actuation and optical shape sensing. We enable jamming structures to sense input and function as interaction devices through two contributed methods for high-resolution shape sensing using: 1) index-matched particles and fluids, and 2) capacitive and electric field sensing. We explore the design space of malleable and organic user interfaces enabled by jamming through four motivational prototypes that highlight jamming's potential in HCI, including applications for tabletops, tablets and for portable shape-changing mobile devices.National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374

    Design and analysis of a soft mobile robot composed of multiple thermally activated joints driven by a single actuator

    No full text
    Soft robotic systems have applications in industrial, medical, and security applications. Many applications require these robots to be small and lightweight. One challenge in developing a soft robotic system is to drive multiple degrees-of-freedom (DOF) with few actuators, thereby reducing system size and weight. This paper presents the analysis and design of an inchworm-like mobile robot that consists of multiple, independent thermally activated joints but is driven by a single actuator. To realize control of this under-actuated system, a solder-based locking mechanism has been developed to selectively activate individual joints without requiring additional actuators. The design and performance analysis of a prototype mobile robot that is capable of inchworm-like translational and steering motion is described. The design of novel “feet” with anisotropic friction properties is also described.United States. Defense Advanced Research Projects Agency. Chemical Robots Progra

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore