47,380 research outputs found

    Rotation Symmetry-Protected Topological Phases of Fermions

    Full text link
    We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demonstrate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the Z2\mathbb{Z}_2 fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.Comment: are welcom

    Classification of symmetry fractionalization in gapped Z2\mathbb Z_2 spin liquids

    Full text link
    In quantum spin liquids, fractional spinon excitations carry half-integer spins and other fractional quantum numbers of lattice and time-reversal symmetries. Different patterns of symmetry fractionalization distinguish different spin liquid phases. In this work, we derive a general constraint on the symmetry fractionalization of spinons in a gapped spin liquid, realized in a system with an odd number of spin-1/21/2 per unit cell. In particular, when applied to kagome/triangular lattices, we obtain a complete classification of symmetric gapped Z2\mathbb{Z_2} spin liquids.Comment: 11 pages, 4 figures. v2 published version: minor revisions, and journal reference adde

    Majorana Edge States in Interacting Two-chain Ladders of Fermions

    Full text link
    In this work we study interacting spinless fermions on a two-chain ladder with inter-chain pair tunneling while single-particle tunneling is suppressed at low energy. The model embodies a Z2\mathbb{Z}_2 symmetry associated with the fermion parity on each chain. We find that when the system is driven to the strong-coupling phase by the pair tunneling, Majorana excitations appear on the boundary. Such Majorana edge states correspond to two-fold degeneracy of ground states distinguished by different fermion parity on each chain, thus representing a generalization of one-dimensional topological superconductors. We also characterize the stability of the ground state degeneracy against local perturbations. Lattice fermion models realizing such effective field theory are discussed.Comment: 6 pages, 1 figur

    Topological Response Theory of Abelian Symmetry-Protected Topological Phases in Two Dimensions

    Get PDF
    It has been shown that the symmetry-protected topological (SPT) phases with finite Abelian symmetries can be described by Chern-Simons field theory. We propose a topological response theory to uniquely identify the SPT orders, which allows us to obtain a systematic scheme to classify bosonic SPT phases with any finite Abelian symmetry group. We point out that even for finite Abelian symmetry, there exist bosonic SPT phases beyond the current Chern-Simons theory framework. We also apply the theory to fermionic SPT phases with Zm\mathbb{Z}_m symmetry and find the classification of SPT phases depends on the parity of mm: for even mm there are 2m2m classes, mm out of which is intrinsically fermionic SPT phases and can not be realized in any bosonic system. Finally we propose a classification scheme of fermionic SPT phases for any finite, Abelian symmetry.Comment: published versio
    corecore