88 research outputs found

    Evaluation of a computer-aided diagnostic model for corneal diseases by analyzing in vivo confocal microscopy images

    Get PDF
    ObjectiveIn order to automatically and rapidly recognize the layers of corneal images using in vivo confocal microscopy (IVCM) and classify them into normal and abnormal images, a computer-aided diagnostic model was developed and tested based on deep learning to reduce physicians’ workload.MethodsA total of 19,612 corneal images were retrospectively collected from 423 patients who underwent IVCM between January 2021 and August 2022 from Renmin Hospital of Wuhan University (Wuhan, China) and Zhongnan Hospital of Wuhan University (Wuhan, China). Images were then reviewed and categorized by three corneal specialists before training and testing the models, including the layer recognition model (epithelium, bowman’s membrane, stroma, and endothelium) and diagnostic model, to identify the layers of corneal images and distinguish normal images from abnormal images. Totally, 580 database-independent IVCM images were used in a human-machine competition to assess the speed and accuracy of image recognition by 4 ophthalmologists and artificial intelligence (AI). To evaluate the efficacy of the model, 8 trainees were employed to recognize these 580 images both with and without model assistance, and the results of the two evaluations were analyzed to explore the effects of model assistance.ResultsThe accuracy of the model reached 0.914, 0.957, 0.967, and 0.950 for the recognition of 4 layers of epithelium, bowman’s membrane, stroma, and endothelium in the internal test dataset, respectively, and it was 0.961, 0.932, 0.945, and 0.959 for the recognition of normal/abnormal images at each layer, respectively. In the external test dataset, the accuracy of the recognition of corneal layers was 0.960, 0.965, 0.966, and 0.964, respectively, and the accuracy of normal/abnormal image recognition was 0.983, 0.972, 0.940, and 0.982, respectively. In the human-machine competition, the model achieved an accuracy of 0.929, which was similar to that of specialists and higher than that of senior physicians, and the recognition speed was 237 times faster than that of specialists. With model assistance, the accuracy of trainees increased from 0.712 to 0.886.ConclusionA computer-aided diagnostic model was developed for IVCM images based on deep learning, which rapidly recognized the layers of corneal images and classified them as normal and abnormal. This model can increase the efficacy of clinical diagnosis and assist physicians in training and learning for clinical purposes

    The effect of the cooling on a dry storage cask for spent nuclear fuel by different wind speed

    No full text
    &amp;lt;p&amp;gt;In this study, we considered different the wind speeds affects the thermal performance when the dry storage cask for spent nuclear fuel , which used NAC- MAGNASTOR cask of system, and placed outdoors. We Ddiscuss the dry storage cask for spent nuclear fuel cooling by the thermal buoyancy ventilation of cask. Firstly, Compare the experimental data of low-speed wind tunnel experiments with the result of from a commercial software PHOENICS CFD (Computational Fluid Dynamics) for heat flow analysis, and confirm the reliability of the CFD simulation results of the software. Then we used the software to simulate higher wind speeds to understand the thermal performance of the cask for spent nuclear fuel by various wind speeds. With external wind speed is was more much faster, channel airflow of the cask hads increased, especially upper channel airflow of the cask and near steel cylindrical. The temperature of the windward side of the cask hads also been significantly reduced, The lee side hads a slower wind speed and a smaller temperature drop, and generates an eddy below the lee side, which helpeds to dissipate .heat,. However, as the wind speed gradually increases, the lee side changed to a downdraft, and the temperature drop was also slowed down. It is noticeable that the situation may occur when a typhoon comes.&amp;lt;/p&amp;gt; </jats:p

    Dominant constraints on the evolution of rhythmic gene expression

    Full text link
    AbstractAlthough the individual transcriptional regulators of the core circadian clock are distinct amongst different organisms, the autoregulatory feedback loops they form are conserved. This unified design principle explains how daily physiological activities oscillate across species. However, whether analogous design principles govern the gene expression output of circadian clocks is unknown. Herein, we performed a comparative analysis of rhythmic gene expression in eight diverse species and captured four common distribution patterns of cycling gene expression across these species. We hypothesized that maintenance of reduced energetic costs constrains the evolution of rhythmic gene expression. Our large-scale computational simulations support this hypothesis by showing that selection against high-energy expenditure completely regenerates all cycling gene patterns. Moreover, we find that the late- and early-phase peaks of rhythmic expression have been subjected to this type of selective pressure. Therefore, energetic costs have constricted the cycling transcriptome throughout evolutionary history.</jats:p

    Dominant constraints on the evolution of rhythmic gene expression

    No full text
    Although the individual transcriptional regulators of the core circadian clock are distinct among different organisms, the autoregulatory feedback loops they form are conserved. This unified design principle explains how daily physiological activities oscillate across species. However, it is unknown whether analogous design principles govern the gene expression output of circadian clocks. In this study, we performed a comparative analysis of rhythmic gene expression in eight diverse species and identified four common distribution patterns of cycling gene expression across these species. We hypothesized that the maintenance of reduced energetic costs constrains the evolution of rhythmic gene expression. Our large-scale computational simulations support this hypothesis by showing that selection against high-energy expenditure completely regenerates all cycling gene patterns. Moreover, we find that the peaks of rhythmic expression have been subjected to this type of selective pressure. The results suggest that selective pressure from circadian regulation efficiently removes unnecessary gene products from the transcriptome, thereby significantly impacting its evolutionary path

    Analysis of Expression and Bioinformatics of Trehalose-6-phosphate Phosphatases (TPP) Gene Family in Wheat Indicates a Role in Plant Development and Stress Response

    No full text
    Abstract Background: Trehalose-6-phosphate phosphatases genes (TPPs) are involved in the development and stress response of plants by regulating the biosynthesis of trehalose, though little is currently known about TPPs in common wheat (Triticum aestivum L.).Results: In this study, we performed a genome-wide identification of the TPP gene family in common wheat, and identified a total of 31 TPP genes. These were subdivided into six subfamilies based on the phylogenetic relationships and the conservation of protein in six monocot and eudicot plants. The majority of TPP genes were represented by 2-3 wheat homoalleles (named TaTPPX_ZA, TaTPPX_ZB, or TaTPPX_ZD), where Z is the location on the wheat chromosome of the gene number (X). We also analyzed the chromosomal location, exon-intron structure, orthologous genes, and protein motifs of the TaTPPs. The RNA-seq data was used to perform an expression analysis, which found 26 TaTPP genes to be differentially expressed based on spatial and temporal characteristics, indicating they have varied functions in the growth and development of wheat. Additionally, we assessed how the promoter regulatory elements were organized and used qRT-PCR in the leaves to observe how they were expressed following ABA, salt, low tempreture, and drought stress treatments. All of these genes exhibited differential expression against one or more stress treatments. Furthermore, overexpressing TaTPP11 in Arabidopsis results delayed plant development and enhanced drought tolerance, but not affect seed morphology. Conclusions: TaTPPs could serve important roles in the development and stress response in wheat. These results provide a basis for subsequent research into the function of TaTPPs.</jats:p

    The branching angle effect on the properties of rigid dendrimers studied by Monte Carlo simulation

    No full text
    We studied the properties of rigid dendrimers with different branching angles by means of Monte Carlo simulations on a coarse-grained level. It was found that the terminal groups of dendrimers with both rigid and flexible spacers could locate near the center of the molecule. In flexible dendrimers, the wide distribution is attributed to the back folding of flexible spacers, while in rigid dendrimers, it is caused by the branching angle effect that a branch will grow laterally due to the restriction of a non-zero branching angle. It has been established that the branching angle is a key parameter for rigid dendrimers, which can be applied to tune the properties of rigid dendrimers: decreasing branching angle is helpful to obtain dendrimers with a larger size, lower density, and more terminal groups locating at periphery.This work was supported by the Natural Science Foundation of China (No. 21464004); the State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources (Nos. CMEMR2013-A08, CMEMR2013-C11 and CMEMR2018-C9); Guangxi Natural Science Foundation of China (Nos. 2014GXNSFAA118038 and 2015GXNSFCB139005) and the Program for Key Scientific Researchof Guangxi Normal University (No. 2013ZD004)

    Genome-wide analysis of trehalose-6-phosphate phosphatases (TPP) gene family in wheat indicates their roles in plant development and stress response

    No full text
    Abstract Background Trehalose-6-phosphate phosphatases genes (TPPs) are involved in the development and stress response of plants by regulating the biosynthesis of trehalose, though little is currently known about TPPs in common wheat (Triticum aestivum L.). Results In this study, we performed a genome-wide identification of the TPP gene family in common wheat, and identified a total of 31 TaTPP genes. These were subdivided into six subfamilies based on the phylogenetic relationships and the conservation of protein in six monocot and eudicot plants. The majority of TPP genes were represented by 2–3 wheat homoalleles (named TaTPPX_ZA, TaTPPX_ZB, or TaTPPX_ZD), where Z is the location on the wheat chromosome of the gene number (X). We also analyzed the chromosomal location, exon-intron structure, orthologous genes, and protein motifs of the TaTPPs. The RNA-seq data was used to perform an expression analysis, which found 26 TaTPP genes to be differentially expressed based on spatial and temporal characteristics, indicating they have varied functions in the growth and development of wheat. Additionally, we assessed how the promoter regulatory elements were organized and used qRT-PCR in the leaves to observe how they were expressed following ABA, salt, low tempreture, and drought stress treatments. All of these genes exhibited differential expression against one or more stress treatments. Furthermore, ectopic expression of TaTPP11 in Arabidopsis exhibited a phenotype that delayed plant development but did not affect seed morphology. Conclusions TaTPPs could serve important roles in the development and stress response in wheat. These results provide a basis for subsequent research into the function of TaTPPs. </jats:sec
    corecore