23,705 research outputs found

    Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification

    Get PDF
    Measurement of blood oxygen saturation (sO2) by optical imaging oximetry provides invaluable insight into local tissue functions and metabolism. Despite different embodiments and modalities, all label-free optical-imaging oximetry techniques utilize the same principle of sO2-dependent spectral contrast from haemoglobin. Traditional approaches for quantifying sO2 often rely on analytical models that are fitted by the spectral measurements. These approaches in practice suffer from uncertainties due to biological variability, tissue geometry, light scattering, systemic spectral bias, and variations in the experimental conditions. Here, we propose a new data-driven approach, termed deep spectral learning (DSL), to achieve oximetry that is highly robust to experimental variations and, more importantly, able to provide uncertainty quantification for each sO2 prediction. To demonstrate the robustness and generalizability of DSL, we analyse data from two visible light optical coherence tomography (vis-OCT) setups across two separate in vivo experiments on rat retinas. Predictions made by DSL are highly adaptive to experimental variabilities as well as the depth-dependent backscattering spectra. Two neural-network-based models are tested and compared with the traditional least-squares fitting (LSF) method. The DSL-predicted sO2 shows significantly lower mean-square errors than those of the LSF. For the first time, we have demonstrated en face maps of retinal oximetry along with a pixel-wise confidence assessment. Our DSL overcomes several limitations of traditional approaches and provides a more flexible, robust, and reliable deep learning approach for in vivo non-invasive label-free optical oximetry.R01 CA224911 - NCI NIH HHS; R01 CA232015 - NCI NIH HHS; R01 NS108464 - NINDS NIH HHS; R21 EY029412 - NEI NIH HHSAccepted manuscrip

    Mechanisms of Alcohol-Induced Endoplasmic Reticulum Stress and Organ Injuries

    Get PDF
    Alcohol is readily distributed throughout the body in the blood stream and crosses biological membranes, which affect virtually all biological processes inside the cell. Excessive alcohol consumption induces numerous pathological stress responses, part of which is endoplasmic reticulum (ER) stress response. ER stress, a condition under which unfolded/misfolded protein accumulates in the ER, contributes to alcoholic disorders of major organs such as liver, pancreas, heart, and brain. Potential mechanisms that trigger the alcoholic ER stress response are directly or indirectly related to alcohol metabolism, which includes toxic acetaldehyde and homocysteine, oxidative stress, perturbations of calcium or iron homeostasis, alterations of S-adenosylmethionine to S-adenosylhomocysteine ratio, and abnormal epigenetic modifications. Interruption of the ER stress triggers is anticipated to have therapeutic benefits for alcoholic disorders

    Proton Spin Content From Lattice QCD

    Get PDF
    We calculate the form factor of the quark energy momentum tensor and thereby extract the quark orbital angular momentum of the nucleon. The calculation is done on a quenched 163×2416^3 \times 24 lattice at β=6.0\beta = 6.0 and with Wilson fermions at κ\kappa = 0.148, 0.152, 0.154 and 0.155. We calculate the disconnected insertion stochastically which employs the Z2Z_2 noise with an unbiased subtraction. This proves to be an efficient method of reduce the error from the noise. We find that the total quark contribution to the proton spin is 0.29±0.070.29 \pm 0.07. From this we deduce that the quark orbital angular momentum is 0.17±0.080.17 \pm 0.08 and predict the gluon spin to be 0.21±0.070.21 \pm 0.07, i.e. about 40% of the proton spin is due to the glue.Comment: LATTICE99(Matrix Elements), 3 pages, 3 figure
    corecore