87,716 research outputs found

    Ultracold molecules: new probes on the variation of fundamental constants

    Full text link
    Ultracold molecules offer brand new opportunities to probe the variation of fundamental constants with unprecedented sensitivity. This paper summarizes theoretical background and current constraints on the variation of fine structure constant and electron-to-proton mass ratio, as well as proposals and experimental efforts to measure the variations based on ultracold molecules. In particular, we describe two novel spectroscopic schemes on ultracold molecules which have greatly enhanced sensitivity to fundamental constants: resonant scattering near Feshbach resonances and spectroscopy on close-lying energy levels of ultracold molecules

    Physical modelling of amorphous thermoplastic polymer and numerical simulation of micro hot embossing process

    Get PDF
    Micro hot embossing process is considered as one of the most promising micro replication processes for manufacturing of polymeric components, especially for the high aspect ratio components and large surface structural components. A large number of hot embossing experimental results have been published, the material modelling and processes simulation to improve the quality of micro replication by hot embossing process are still lacking. This paper consists to 3D modelling of micro hot embossing process with amorphous thermoplastic polymers, including the mechanical characterisation of polymers properties, identification of the viscoelastic behaviour law of the polymers, numerical simulation and experimental investigation of micro hot embossing process. Static compression creep tests have been carried out to investigate the selected polymers’ viscoelastic properties. The Generalized Maxwell model has been proposed to describe the relaxation modulus of the polymers and good agreement has been observed. The numerical simulation of the hot embossing process in 3D has been achieved by taking into account the viscoelastic behaviour of the polymers. The microfluidic devices with the thickness of 2 mm have been elaborated by hot embossing process. The hot embossing process has been carried out using horizontal injection/compression moulding equipment, especially developed for this study. A complete compression mould tool, equipped with the heating system, the cooling system, the ejection system and the vacuum system, has been designed and elaborated in our research. Polymer-based microfluidic devices have been successfully replicated by the hot embossing process using the compression system developed. Proper agreement between the numerical simulation and the experimental elaboration has been observed. It shows strong possibility for the development of the 3D numerical model to optimize the micro hot embossing process in the future

    Hadronic B Decays to Charmed Baryons

    Full text link
    We study exclusive B decays to final states containing a charmed baryon within the pole model framework. Since the strong coupling for ΛbBˉN\Lambda_b\bar B N is larger than that for ΣbBˉN\Sigma_b \bar BN, the two-body charmful decay BΣc0pˉB^-\to\Sigma_c^0\bar p has a rate larger than Bˉ0Λc+pˉ\bar B^0\to\Lambda_c^+\bar p as the former proceeds via the Λb\Lambda_b pole while the latter via the Σb\Sigma_b pole. By the same token, the three-body decay Bˉ0Σc++pˉπ\bar B^0\to\Sigma_c^{++}\bar p\pi^- receives less baryon-pole contribution than BΛc+pˉπB^-\to\Lambda_c^+\bar p\pi^-. However, because the important charmed-meson pole diagrams contribute constructively to the former and destructively to the latter, Σc++pˉπ\Sigma_c^{++}\bar p\pi^- has a rate slightly larger than Λc+pˉπ\Lambda_c^+\bar p\pi^-. It is found that one quarter of the BΛc+pˉπB^-\to \Lambda_c^+\bar p\pi^- rate comes from the resonant contributions. We discuss the decays Bˉ0Σc0pˉπ+\bar B^0\to\Sigma_c^0\bar p\pi^+ and BΣc0pˉπ0B^-\to\Sigma_c^0\bar p\pi^0 and stress that they are not color suppressed even though they can only proceed via an internal W emission.Comment: 25 pages, 6 figure

    Determination of Freeze-out Conditions from Lattice QCD Calculations

    Full text link
    Freeze-out conditions in Heavy Ion Collisions are generally determined by comparing experimental results for ratios of particle yields with theoretical predictions based on applications of the Hadron Resonance Gas model. We discuss here how this model dependent determination of freeze-out parameters may eventually be replaced by theoretical predictions based on equilibrium QCD thermodynamics.Comment: presented at the International Conference "Critical Point and Onset of Deconfinement - CPOD 2011", Wuhan, November 7-11, 201

    Local Density of States and Angle-Resolved Photoemission Spectral Function of an Inhomogeneous D-wave Superconductor

    Full text link
    Nanoscale inhomogeneity seems to be a central feature of the d-wave superconductivity in the cuprates. Such a feature can strongly affect the local density of states (LDOS) and the spectral weight functions. Within the Bogoliubov-de Gennes formalism we examine various inhomogeneous configurations of the superconducting order parameter to see which ones better agree with the experimental data. Nanoscale large amplitude oscillations in the order parameter seem to fit the LDOS data for the underdoped cuprates. The one-particle spectral function for a general inhomogeneous configuration exhibits a coherent peak in the nodal direction. In contrast, the spectral function in the antinodal region is easily rendered incoherent by the inhomogeneity. This throws new light on the dichotomy between the nodal and antinodal quasiparticles in the underdoped cuprates.Comment: 5 pages, 9 pictures. Phys. Rev. B (in press

    On the Casimir effect for parallel plates in the spacetime with one extra compactified dimension

    Get PDF
    In this paper, the Casimir effect for parallel plates in the presence of one compactified universal extra dimension is reexamined in detail. Having regularized the expressions of Casimir force, we show that the nature of Casimir force is repulsive if the distance between the plates is large enough, which is disagree with the experimental phenomena.Comment: 7 pages, 3 figure

    Radiative Kaon Decays K±π±π0γK^\pm\to\pi^\pm\pi^0\gamma and Direct CP Violation

    Full text link
    It is stressed that a measurement of the electric dipole amplitude for direct photon emission in \kpm decays through its interference with inner bremsstrahlung is important for differentiating among various models. Effects of amplitude CP violation in the radiative decays of the charged kaon are analyzed in the Standard Model in conjunction with the large NcN_c approach. We point out that gluon and electromagnetic penguin contributions to the CP-violating asymmetry between the Dalitz plots of \kpm are of equal weight. The magnitude of CP asymmetry ranges from 2×1062\times 10^{-6} to 1×1051\times 10^{-5} when the photon energy in the kaon rest frame varies from 50 MeV to 170 MeV.Comment: Latex, 11 pages, ITP-SB-93-36, IP-ASTP-22-9

    Is GRO J1744-28 a Strange Star?

    Get PDF
    The unusal hard x-ray burster GRO J1744-28 recently discovered by the Compton Gamma-ray Observatory (GRO) can be modeled as a strange star with a dipolar magnetic field 1011\le 10^{11} Gauss. When the accreted mass of the star exceeds some critical mass, its crust may break, resulting in conversion of the accreted matter into strange matter and release of energy. Subsequently, a fireball may form and expand relativistically outward. The expanding fireball may interact with the surrounding interstellar medium, causing its kinetic energy to be radiated in shock waves, producing a burst of x-ray radiation. The burst energy, duration, interval and spectrum derived from such a model are consistent with the observations of GRO J1744-28.Comment: Latex, has been published in SCIENCE, Vol. 280, 40

    Boundary effect on CDW: Friedel oscillations, STM image

    Full text link
    We study the effect of open boundary condition on charge density waves (CDW). The electron density oscillates rapidly close to the boundary, and additional non-oscillating terms (~ln(r)) appear. The Friedel oscillations survive beyond the CDW coherence length (v_F/Delta), but their amplitude gets heavily suppressed. The scanning tunneling microscopy image (STM) of CDW shows clear features of the boundary. The local tunneling conductance becomes asymmetric with respect to the Fermi energy, and considerable amount of spectral weight is transferred to the lower gap edge. Also it exhibits additional zeros reflecting the influence of the boundary.Comment: 7 pages, 6 figure
    corecore