127 research outputs found

    NMD-12: A New Machine-Learning Derived Screening Instrument to Detect Mild Cognitive Impairment and Dementia

    Get PDF
    Introduction Using machine learning techniques, we developed a brief questionnaire to aid neurologists and neuropsychologists in the screening of mild cognitive impairment (MCI) and dementia. Methods With the reduction of the survey size as a goal of this research, feature selection based on information gain was performed to rank the contribution of the 45 items corresponding to patient responses to the specified questions. The most important items were used to build the optimal screening model based on the accuracy, practicality, and interpretability. The diagnostic accuracy for discriminating normal cognition (NC), MCI, very mild dementia (VMD) and dementia was validated in the test group. Results The screening model (NMD-12) was constructed with the 12 items that were ranked the highest in feature selection. The receiver-operator characteristic (ROC) analysis showed that the area under the curve (AUC) in the test group was 0.94 for discriminating NC vs. MCI, 0.88 for MCI vs. VMD, 0.97 for MCI vs. dementia, and 0.96 for VMD vs. dementia, respectively. Discussion The NMD-12 model has been developed and validated in this study. It provides healthcare professionals with a simple and practical screening tool which accurately differentiates NC, MCI, VMD, and dementia

    Numerical analysis of thermoelectric power generation coupled with temperature-dependent material properties

    Get PDF
    Thermoelectric generator (TEG) with improved performance is a promising technology in power supply and energy harvesting. Existing studies primarily adopt constant material properties to investigate TEG performance. However, thermoelectric (TE) material properties are subjected to considerable variations with temperature. Thus, reasonable doubts have risen concerning the influence level of temperature-dependent material properties on TEG performance. To solve this problem, an efficient and a comprehensive one-dimensional numerical model is developed to fully consider the third-order polynomial temperature-dependent thermal conductivity, Seebeck coefficient, and electrical resistivity. Control volume and finite difference algorithms are compared, and experiments are conducted to verify the developed numerical model. The temperature distribution along the TE leg obviously differs from the parabolic shape, which is a classic temperature distribution under the assumption of constant material properties. Insights find that the local change rate of thermal conductivity and Thomson effect are the essential reasons for the abovementioned phenomenon. It has been found that Thomson heat is released in the part of the leg near the cold-end, whereas it is absorbed in the remaining parts of the leg near the hot-end. The electric power on the basis of constant material properties is confirmed to be accurate enough by the developed numerical model, but the parabolic shape of the TE efficiency can be only obtained when temperature-dependent material properties are considered. Furthermore, it is wise to improve the TE efficiency by structural optimization. The present work provides an efficient and a comprehensive one-dimensional numerical model to include temperature-dependent material properties. New insights into the temperature and heat flux distribution, Thomson influence, and structural optimization potential are also presented for the in-depth understanding of the TE conversion process

    Laser-based defect characterization and removal process for manufacturing fused silica optic with high ultraviolet laser damage threshold

    Get PDF
    Residual processing defects during the contact processing processes greatly reduce the anti-ultraviolet (UV) laser damage performance of fused silica optics, which significantly limited development of high-energy laser systems. In this study, we demonstrate the manufacturing of fused silica optics with a high damage threshold using a CO2 laser process chain. Based on theoretical and experimental studies, the proposed uniform layer-by-layer laser ablation technique can be used to characterize the subsurface mechanical damage in three-dimensional full aperture. Longitudinal ablation resolutions ranging from nanometers to micrometers can be realized; the minimum longitudinal resolution is < 5 nm. This technique can also be used as a crack-free grinding tool to completely remove subsurface mechanical damage, and as a cleaning tool to effectively clean surface/subsurface contamination. Through effective control of defects in the entire chain, the laser-induced damage thresholds of samples fabricated by the CO2 laser process chain were 41% (0% probability) and 65.7% (100% probability) higher than those of samples fabricated using the conventional process chain. This laser-based defect characterization and removal process provides a new tool to guide optimization of the conventional finishing process and represents a new direction for fabrication of highly damage-resistant fused silica optics for high-energy laser applications

    Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay

    Get PDF
    Protein assays show great importance in medical research and disease diagnoses. Liquid crystals (LCs), as a branch of sensitive materials, offer promising applicability in the field of biosensing. Herein, we developed an ultrasensitive biosensor for the detection of low-concentration protein molecules, employing LC-amplified optofluidic resonators. In this design, the orientation of LCs was disturbed by immobilized protein molecules through the reduction of the vertical anchoring force from the alignment layer. A biosensing platform based on the whispering-gallery mode (WGM) from the LC-amplified optofluidic resonator was developed and explored, in which the spectral wavelength shift was monitored as the sensing parameter. The microbubble structure provided a stable and reliable WGM resonator with a high Q factor for LCs. It is demonstrated that the wall thickness of the microbubble played a key role in enhancing the sensitivity of the LC-amplified WGM microcavity. It is also found that protein molecules coated on the internal surface of microbubble led to their interactions with laser beams and the orientation transition of LCs. Both effects amplified the target information and triggered a sensitive wavelength shift in WGM spectra. A detection limit of 1 fM for bovine serum albumin (BSA) was achieved to demonstrate the high-sensitivity of our sensing platform in protein assays. Compared to the detection using a conventional polarized optical microscope (POM), the sensitivity was improved by seven orders of magnitude. Furthermore, multiple types of proteins and specific biosensing were also investigated to verify the potential of LC-amplified optofluidic resonators in the biomolecular detection. Our studies indicate that LC-amplified optofluidic resonators offer a new solution for the ultrasensitive real-time biosensing and the characterization of biomolecular interactions

    A Built-In Strategy for Containment of Transgenic Plants: Creation of Selectively Terminable Transgenic Rice

    Get PDF
    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation

    Quantifying the effects of plant density on soybean lodging resistance and growth dynamics in maize-soybean strip intercropping

    Get PDF
    Shading-induced soybean stem lodging is a prevalent concern in the maize (Zea mays L.)-soybean (Glycine max L. Merr.) strip intercropping system, leading to a substantial decline in yield. Nevertheless, the associations between soybean growth, stem lodging, and yield formation in this scenario remain unclear. To investigate this, the logistic and beta growth models were utilized to analyze the growth process of soybean organs (stems, leaves, branches, and pods) and the accumulation of carbohydrates (lignin, cellulose, and sucrose) at three planting densities (8.5, 10, and 12.5 plants m−2) in both strip intercropping and skip strip monoculture systems. The results indicate that shading stress caused by maize in the intercropping system reduced lignin and cellulose accumulation in soybean stems, thus decelerating soybean organ growth compared to monoculture. Furthermore, intercropped soybean at higher planting density (PD3) exhibited a 28% reduction in the maximum dry matter growth rate (cm) and a 11% decrease in the time taken to reach the maximum dry matter growth rate (te) compared to the lower planting density (PD1). Additionally, a 29% decrease in the maximum accumulation rate (cmax) of sucrose, lignin, and cellulose was observed, along with a 13% decrease in the continuous accumulation time (tc) of these carbohydrates in intercropped soybean at PD3. Interspecific and intraspecific shading stress led to a preferential allocation of assimilates into soybean stems, enhancing plant height during the initial stage, while at later stages, a greater proportion of sucrose was allocated to leaves. Consequently, this hindered the conversion of sucrose into lignin and cellulose within the stems, ultimately resulting in a reduction in the lodging resistance index (LRI). Overall, this study provides valuable insights into the effects of shading stress on soybean growth and yield. It also emphasizes how optimizing planting density in intercropping systems can effectively alleviate shading stress and enhance crop productivity

    MicroRNA-140 mediates RB tumor suppressor function to control stem cell-like activity through interleukin-6

    Get PDF
    We established an in vitro cell culture system to determine novel activities of the retinoblastoma (Rb) protein during tumor progression. Rb depletion in p53-null mouse-derived soft tissue sarcoma cells induced a spherogenic phenotype. Cells retrieved from Rb-depleted spheres exhibited slower proliferation and less efficient BrdU incorporation, however, much higher spherogenic activity and aggressive behavior. We discovered six miRNAs, including mmu-miR-18a, -25, -29b, -140, -337, and -1839, whose expression levels correlated tightly with the Rb status and spherogenic activity. Among these, mmu-miR-140 appeared to be positively controlled by Rb and to antagonize the effect of Rb depletion on spherogenesis and tumorigenesis. Furthermore, among genes potentially targeted by mmu-miR-140, Il-6 was upregulated by Rb depletion and downregulated by mmu-mir-140 overexpression. Altogether, we demonstrate the possibility that mmu-mir-140 mediates the Rb function to downregulate Il-6 by targeting its 3\u27-untranslated region. Finally, we detected the same relationship among RB, hsa-miR-140 and IL-6 in a human breast cancer cell line MCF-7. Because IL-6 is a critical modulator of malignant features of cancer cells and the RB pathway is impaired in the majority of cancers, hsa-miR-140 might be a promising therapeutic tool that disrupts linkage between tumor suppressor inactivation and pro-inflammatory cytokine response.Supplementary Table1 and Supplementary Table2: We offer the table data with an Excel fil

    Hollow Hemispherical Lithium Iron Silicate Synthesized by an Ascorbic Acid-Assisted Hydrothermal Method as a Cathode Material for Li Ion Batteries

    No full text
    High-capacity and high-voltage cathode materials are required to meet the increasing demand for energy density in Li ion batteries. Lithium iron silicate (Li2FeSiO4) is a cathode material with a high theoretical capacity of 331 mAh&middot;g&minus;1. However, its poor conductivity and low Li ion diffusion coefficient result in poor capability, hindering practical applications. Morphology has an important influence on the properties of materials, and nanomaterials with hollow structures are widely used in electrochemical devices. Herein, we report a novel hollow hemispherical Li2FeSiO4 synthesized by a template-free hydrothermal method with the addition of ascorbic acid. The hollow hemispherical Li2FeSiO4 consisted of finer particles with a shell thickness of about 80 nm. After carbon coating, the composite was applied as the cathode in Li ion batteries. As a result, the hollow hemispherical Li2FeSiO4/C exhibited a discharge capacity as high as 192 mAh&middot;g&minus;1 at 0.2 C, and the average capacities were 134.5, 115.5 and 93.4 mAh&middot;g&minus;1 at 0.5, 1 and 2 C, respectively. In addition, the capacity increased in the first few cycles and then decayed with further cycling, showing a warm-up like behavior, and after 160 cycles the capacities maintained 114.2, 101.6 and 79.3 mAh&middot;g&minus;1 at 0.5, 1 and 2 C, respectively. Such a method of adding ascorbic acid in the hydrothermal reaction can effectively synthesize hollow hemispherical Li2FeSiO4 with the enhanced electrochemical performance

    Sex Differences in Time-Domain and Frequency-Domain Heart Rate Variability Measures of Fatigued Drivers

    No full text
    The effects of fatigue on a driver&rsquo;s autonomic nervous system (ANS) were investigated through heart rate variability (HRV) measures considering the difference of sex. Electrocardiogram (ECG) data from 18 drivers were recorded during a simulator-based driving experiment. Thirteen short-term HRV measures were extracted through time-domain and frequency-domain methods. First, differences in HRV measures related to mental state (alert or fatigued) were analyzed in all subjects. Then, sex-specific changes between alert and fatigued states were investigated. Finally, sex differences between alert and fatigued states were compared. For all subjects, ten measures showed significant differences (Mann-Whitney U test, p &lt; 0.01) between different mental states. In male and female drivers, eight and four measures, respectively, showed significant differences between different mental states. Six measures showed significant differences between males and females in an alert state, while ten measures showed significant sex differences in a fatigued state. In conclusion, fatigue impacts drivers&rsquo; ANS activity, and this impact differs by sex; more differences exist between male and female drivers&rsquo; ANS activity in a fatigued state than in an alert state
    • …
    corecore