1 research outputs found

    Effect of Iodine Doping on Bi2_{2}Sr2_{2}Ca1_{1}Cu2_{2}Ox_{x}: Charge Transfer or Interlayer Coupling?

    Full text link
    A comparative study has been made of iodine-intercalated Bi2_{2}Sr2_{2}Ca1_{1}Cu2_{2}Ox_{x} single crystal and 1 atm O2_{2} annealed Bi2_{2}Sr2_{2}Ca1_{1}Cu1_{1}Ox_{x} single crystal using AC susceptibility measurement, X-ray photoemission (XPS) and angle-resolved ultraviolet photoemission spectroscopy (ARUPS). AC susceptibility measurement indicates that O2_{2}-doped samples studied have Tc_{c} of 84 o^{o}K, whereas Tc_{c} of Iodine-doped samples studied are 80 o^{o}K. XPS Cu 2p core level data establish that the hole concentration in the CuO2_{2} planes are essentially the same for these two kinds of samples. ARUPS measurements show that electronic structure of the normal states near the Fermi level has been strongly affected by iodine intercalation. We conclude that the dominant effect of iodine doping is to alter the interlayer coupling.Comment: LBL 9 pages, APS_Revtex. 5 Figures, available upon request. UW-Madison preprin
    corecore