42 research outputs found

    Observation of Phase Defects in Quasi-2D Bose-Einstein Condensates

    Full text link
    We have observed phase defects in quasi-2D Bose-Einstein condensates close to the condensation temperature. Either a single or several equally spaced condensates are produced by selectively evaporating the sites of a 1D optical lattice. When several clouds are released from the lattice and allowed to overlap, dislocation lines in the interference patterns reveal nontrivial phase defects

    The atomic Bose gas in Flatland

    Full text link
    We describe a recent experiment performed with rubidium atoms (87^{87}Rb), aiming at studying the coherence properties of a two-dimensional gas of bosonic particles at low temperature. We have observed in particular a Berezinskii--Kosterlitz--Thouless (BKT) type crossover in the system, using a matter wave heterodyning technique. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of the proliferation of free vortices, in agreement with the microscopic BKT theory.Comment: To appear in "ATOMIC PHYSICS 20" Proceedings of the XX International Conference on Atomic Physics (ICAP

    Propagation front of correlations in an interacting Bose gas

    Full text link
    We analyze the quench dynamics of a one-dimensional bosonic Mott insulator and focus on the time evolution of density correlations. For these we identify a pronounced propagation front, the velocity of which, once correctly extrapolated at large distances, can serve as a quantitative characteristic of the many-body Hamiltonian. In particular, the velocity allows the weakly interacting regime, which is qualitatively well described by free bosons, to be distinguished from the strongly interacting one, in which pairs of distinct quasiparticles dominate the dynamics. In order to describe the latter case analytically, we introduce a general approximation to solve the Bose-Hubbard Hamiltonian based on the Jordan-Wigner fermionization of auxiliary particles. This approach can also be used to determine the ground-state properties. As a complement to the fermionization approach, we derive explicitly the time-dependent many-body state in the noninteracting limit and compare our results to numerical simulations in the whole range of interactions of the Bose-Hubbard model.Comment: 16 pages, 7 figure

    An atomic Hong-Ou-Mandel experiment

    Full text link
    The celebrated Hong, Ou and Mandel (HOM) effect is one of the simplest illustrations of two-particle interference, and is unique to the quantum realm. In the original experiment, two photons arriving simultaneously in the input channels of a beam-splitter were observed to always emerge together in one of the output channels. Here, we report on the realisation of a closely analogous experiment with atoms instead of photons. This opens the prospect of testing Bell's inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics, with an eye on theories of the quantum-to-classical transition. Our work also demonstrates a new way to produce and benchmark twin-atom pairs that may be of interest for quantum information processing and quantum simulation

    Practical scheme for a light-induced gauge field in an atomic Bose gas

    Full text link
    We propose a scheme to generate an Abelian gauge field in an atomic gas using two crossed laser beams. If the internal atomic state follows adiabatically the eigenstates of the atom-laser interaction, Berry's phase gives rise to a vector potential that can nucleate vortices in a Bose gas. The present scheme operates even for a large detuning with respect to the atomic resonance, making it applicable to alkali-metal atoms without significant heating due to spontaneous emission. We test the validity of the adiabatic approximation by integrating the set of coupled Gross-Pitaevskii equations associated with the various internal atomic states, and we show that the steady state of the interacting gas indeed exhibits a vortex lattice, as expected from the adiabatic gauge field.Comment: 4 pages, 3 figure

    Coherent light scattering from a two-dimensional Mott insulator

    Get PDF
    We experimentally demonstrate coherent light scattering from an atomic Mott insulator in a two-dimensional lattice. The far-field diffraction pattern of small clouds of a few hundred atoms was imaged while simultaneously laser cooling the atoms with the probe beams. We describe the position of the diffraction peaks and the scaling of the peak parameters by a simple analytic model. In contrast to Bragg scattering, scattering from a single plane yields diffraction peaks for any incidence angle. We demonstrate the feasibility of detecting spin correlations via light scattering by artificially creating a one-dimensional antiferromagnetic order as a density wave and observing the appearance of additional diffraction peaks.Comment: 4 pages, 4 figure

    The 2nd order coherence of superradiance from a Bose--Einstein condensate

    Full text link
    We have measured the 2-particle correlation function of atoms from a Bose--Einstein condensate participating in a superradiance process, which directly reflects the 2nd order coherence of the emitted light. We compare this correlation function with that of atoms undergoing stimulated emission. Whereas the stimulated process produces correlations resembling those of a coherent state, we find that superradiance, even in the presence of strong gain, shows a correlation function close to that of a thermal state, just as for ordinary spontaneous emission

    Single-site- and single-atom-resolved measurement of correlation functions

    Get PDF
    Correlation functions play an important role for the theoretical and experimental characterization of many-body systems. In solid-state systems, they are usually determined through scattering experiments whereas in cold-gases systems, time-of-flight and in-situ absorption imaging are the standard observation techniques. However, none of these methods allow the in-situ detection of spatially resolved correlation functions at the single-particle level. Here we give a more detailed account of recent advances in the detection of correlation functions using in-situ fluorescence imaging of ultracold bosonic atoms in an optical lattice. This method yields single-site and single-atom-resolved images of the lattice gas in a single experimental run, thus gaining direct access to fluctuations in the many-body system. As a consequence, the detection of correlation functions between an arbitrary set of lattice sites is possible. This enables not only the detection of two-site correlation functions but also the evaluation of non-local correlations, which originate from an extended region of the system and are used for the characterization of quantum phases that do not possess (quasi-)long-range order in the traditional sense.Comment: extended version of M. Endres et al., Science 334, 200-203 (2011) [arXiv:1108.3317

    Light-cone-like spreading of correlations in a quantum many-body system

    Get PDF
    How fast can correlations spread in a quantum many-body system? Based on the seminal work by Lieb and Robinson, it has recently been shown that several interacting many-body systems exhibit an effective light cone that bounds the propagation speed of correlations. The existence of such a "speed of light" has profound implications for condensed matter physics and quantum information, but has never been observed experimentally. Here we report on the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open important perspectives for understanding relaxation of closed quantum systems far from equilibrium as well as for engineering efficient quantum channels necessary for fast quantum computations.Comment: 7 pages, 5 figures, 2 table

    Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator

    Get PDF
    The reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger scale strongly correlated quantum systems, in order to record in-situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report on fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution on the lattice and identify individual excitations with high fidelity. A comparison of the radial density and variance distributions with theory provides a precise in-situ temperature and entropy measurement from single images. We observe Mott-insulating plateaus with near zero entropy and clearly resolve the high entropy rings separating them although their width is of the order of only a single lattice site. Furthermore, we show how a Mott insulator melts for increasing temperatures due to a proliferation of local defects. Our experiments open a new avenue for the manipulation and analysis of strongly interacting quantum gases on a lattice, as well as for quantum information processing with ultracold atoms. Using the high spatial resolution, it is now possible to directly address individual lattice sites. One could, e.g., introduce local perturbations or access regions of high entropy, a crucial requirement for the implementation of novel cooling schemes for atoms on a lattice
    corecore