1,725 research outputs found

    How to Backdoor Diffusion Models?

    Full text link
    Diffusion models are state-of-the-art deep learning empowered generative models that are trained based on the principle of learning forward and reverse diffusion processes via progressive noise-addition and denoising. To gain a better understanding of the limitations and potential risks, this paper presents the first study on the robustness of diffusion models against backdoor attacks. Specifically, we propose BadDiffusion, a novel attack framework that engineers compromised diffusion processes during model training for backdoor implantation. At the inference stage, the backdoored diffusion model will behave just like an untampered generator for regular data inputs, while falsely generating some targeted outcome designed by the bad actor upon receiving the implanted trigger signal. Such a critical risk can be dreadful for downstream tasks and applications built upon the problematic model. Our extensive experiments on various backdoor attack settings show that BadDiffusion can consistently lead to compromised diffusion models with high utility and target specificity. Even worse, BadDiffusion can be made cost-effective by simply finetuning a clean pre-trained diffusion model to implant backdoors. We also explore some possible countermeasures for risk mitigation. Our results call attention to potential risks and possible misuse of diffusion models

    Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs

    Get PDF
    A compact, narrow-linewidth, tunable source of THz radiation has been developed for spectroscopy and other high-resolution applications. Distributed-Bragg-reflector (DBR) diode lasers at 850 nm are used to pump a low-temperature-grown GaAs photomixer. Resonant optical feedback is employed to stabilize the center frequencies and narrow the linewidths of the DBR lasers. The heterodyne linewidth full-width at half-maximum of two optically locked DBR lasers is 50 kHz on the 20 ms time scale and 2 MHz over 10 s; free-running DBR lasers have linewidths of 40 and 90 MHz on such time scales. This instrument has been used to obtain rotational spectra of acetonitrile (CH3CN) at 313 GHz. Detection limits of 1 × 10^–4 Hz^1/2 (noise/total power) have been achieved, with the noise floor dominated by the detector's noise equivalent power

    Lexical Retrieval Hypothesis in Multimodal Context

    Full text link
    Multimodal corpora have become an essential language resource for language science and grounded natural language processing (NLP) systems due to the growing need to understand and interpret human communication across various channels. In this paper, we first present our efforts in building the first Multimodal Corpus for Languages in Taiwan (MultiMoco). Based on the corpus, we conduct a case study investigating the Lexical Retrieval Hypothesis (LRH), specifically examining whether the hand gestures co-occurring with speech constants facilitate lexical retrieval or serve other discourse functions. With detailed annotations on eight parliamentary interpellations in Taiwan Mandarin, we explore the co-occurrence between speech constants and non-verbal features (i.e., head movement, face movement, hand gesture, and function of hand gesture). Our findings suggest that while hand gestures do serve as facilitators for lexical retrieval in some cases, they also serve the purpose of information emphasis. This study highlights the potential of the MultiMoco Corpus to provide an important resource for in-depth analysis and further research in multimodal communication studies

    Exploring Affordance and Situated Meaning in Image Captions: A Multimodal Analysis

    Full text link
    This paper explores the grounding issue regarding multimodal semantic representation from a computational cognitive-linguistic view. We annotate images from the Flickr30k dataset with five perceptual properties: Affordance, Perceptual Salience, Object Number, Gaze Cueing, and Ecological Niche Association (ENA), and examine their association with textual elements in the image captions. Our findings reveal that images with Gibsonian affordance show a higher frequency of captions containing 'holding-verbs' and 'container-nouns' compared to images displaying telic affordance. Perceptual Salience, Object Number, and ENA are also associated with the choice of linguistic expressions. Our study demonstrates that comprehensive understanding of objects or events requires cognitive attention, semantic nuances in language, and integration across multiple modalities. We highlight the vital importance of situated meaning and affordance grounding in natural language understanding, with the potential to advance human-like interpretation in various scenarios.Comment: 10 pages, 9 figure

    A dynamic model of auctions with buy-it-now: theory and evidence

    Get PDF
    In the ascending-price auctions with Yahoo!-type buy-it-now (BIN), we characterize and derive the closed-form solution for the optimal bidding strategy of the bidder and the optimal BIN price of the seller when they are both risk-averse. The seller is shown to be strictly better o with the BIN option, while the bidders are better o only when their valuation is greater than a threshold value. The theory also implies that the expected transaction price is higher in an auction with an optimal BIN price than one without a BIN. This prediction is conrmed by our data collected from Taiwan's Yahoo! auctions of Nikon digital cameras

    Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope

    Get PDF
    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS will cover a 1.3 degree diameter field with 2394 fibers to complement the imaging capabilities of Hyper SuprimeCam. To retain high throughput, the final positioning accuracy between the fibers and observing targets of PFS is required to be less than 10um. The metrology camera system (MCS) serves as the optical encoder of the fiber motors for the configuring of fibers. MCS provides the fiber positions within a 5um error over the 45 cm focal plane. The information from MCS will be fed into the fiber positioner control system for the closed loop control. MCS will be located at the Cassegrain focus of Subaru telescope in order to to cover the whole focal plane with one 50M pixel Canon CMOS camera. It is a 380mm Schmidt type telescope which generates a uniform spot size with a 10 micron FWHM across the field for reasonable sampling of PSF. Carbon fiber tubes are used to provide a stable structure over the operating conditions without focus adjustments. The CMOS sensor can be read in 0.8s to reduce the overhead for the fiber configuration. The positions of all fibers can be obtained within 0.5s after the readout of the frame. This enables the overall fiber configuration to be less than 2 minutes. MCS will be installed inside a standard Subaru Cassgrain Box. All components that generate heat are located inside a glycol cooled cabinet to reduce the possible image motion due to heat. The optics and camera for MCS have been delivered and tested. The mechanical parts and supporting structure are ready as of spring 2016. The integration of MCS will start in the summer of 2016.Comment: 11 pages, 15 figures. SPIE proceeding. arXiv admin note: text overlap with arXiv:1408.287

    Tensed Ontology Based on Simple Partial Logic

    Get PDF
    Simple partial logic (=SPL) is, broadly speaking, an extensional logic which allows for the truth-value gap. First I give a system of propositional SPL by partializing classical logic, as well as extending it with several non-classical truth-functional operators. Second I show a way based on SPL to construct a system of tensed ontology, by representing tensed statements as two kinds of necessary statements in a linear model that consists of the present and future worlds. Finally I compare that way with other two ways based on Łukasiewicz’s three-valued logic and branching temporal logic

    Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope

    Get PDF
    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. The metrology camera system of PFS serves as the optical encoder of the COBRA fiber motors for the configuring of fibers. The 380mm diameter aperture metrology camera will locate at the Cassegrain focus of Subaru telescope to cover the whole focal plane with one 50M pixel Canon CMOS sensor. The metrology camera is designed to provide the fiber position information within 5{\mu}m error over the 45cm focal plane. The positions of all fibers can be obtained within 1s after the exposure is finished. This enables the overall fiber configuration to be less than 2 minutes.Comment: 10 pages, 12 figures, SPIE Astronomical Telescopes and Instrumentation 201
    corecore