8,767 research outputs found

    Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning

    Full text link
    It is well believed that video captioning is a fundamental but challenging task in both computer vision and artificial intelligence fields. The prevalent approach is to map an input video to a variable-length output sentence in a sequence to sequence manner via Recurrent Neural Network (RNN). Nevertheless, the training of RNN still suffers to some degree from vanishing/exploding gradient problem, making the optimization difficult. Moreover, the inherently recurrent dependency in RNN prevents parallelization within a sequence during training and therefore limits the computations. In this paper, we present a novel design --- Temporal Deformable Convolutional Encoder-Decoder Networks (dubbed as TDConvED) that fully employ convolutions in both encoder and decoder networks for video captioning. Technically, we exploit convolutional block structures that compute intermediate states of a fixed number of inputs and stack several blocks to capture long-term relationships. The structure in encoder is further equipped with temporal deformable convolution to enable free-form deformation of temporal sampling. Our model also capitalizes on temporal attention mechanism for sentence generation. Extensive experiments are conducted on both MSVD and MSR-VTT video captioning datasets, and superior results are reported when comparing to conventional RNN-based encoder-decoder techniques. More remarkably, TDConvED increases CIDEr-D performance from 58.8% to 67.2% on MSVD.Comment: AAAI 201

    Micro Fourier Transform Profilometry (μ\muFTP): 3D shape measurement at 10,000 frames per second

    Full text link
    Recent advances in imaging sensors and digital light projection technology have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with improved resolution and accuracy. However, due to the large number of projection patterns required for phase recovery and disambiguation, the maximum fame rates of current 3D shape measurement techniques are still limited to the range of hundreds of frames per second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μ\muFTP), which can capture 3D surfaces of transient events at up to 10,000 fps based on our newly developed high-speed fringe projection system. Compared with existing techniques, μ\muFTP has the prominent advantage of recovering an accurate, unambiguous, and dense 3D point cloud with only two projected patterns. Furthermore, the phase information is encoded within a single high-frequency fringe image, thereby allowing motion-artifact-free reconstruction of transient events with temporal resolution of 50 microseconds. To show μ\muFTP's broad utility, we use it to reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating fan blades, bullet fired from a toy gun, and balloon's explosion triggered by a flying dart, which were previously difficult or even unable to be captured with conventional approaches.Comment: This manuscript was originally submitted on 30th January 1

    Mask and Restore: Blind Backdoor Defense at Test Time with Masked Autoencoder

    Full text link
    Deep neural networks are vulnerable to backdoor attacks, where an adversary maliciously manipulates the model behavior through overlaying images with special triggers. Existing backdoor defense methods often require accessing a few validation data and model parameters, which are impractical in many real-world applications, e.g., when the model is provided as a cloud service. In this paper, we address the practical task of blind backdoor defense at test time, in particular for black-box models. The true label of every test image needs to be recovered on the fly from the hard label predictions of a suspicious model. The heuristic trigger search in image space, however, is not scalable to complex triggers or high image resolution. We circumvent such barrier by leveraging generic image generation models, and propose a framework of Blind Defense with Masked AutoEncoder (BDMAE). It uses the image structural similarity and label consistency between the test image and MAE restorations to detect possible triggers. The detection result is refined by considering the topology of triggers. We obtain a purified test image from restorations for making prediction. Our approach is blind to the model architectures, trigger patterns or image benignity. Extensive experiments on multiple datasets with different backdoor attacks validate its effectiveness and generalizability. Code is available at https://github.com/tsun/BDMAE

    Backdoor Cleansing with Unlabeled Data

    Full text link
    Due to the increasing computational demand of Deep Neural Networks (DNNs), companies and organizations have begun to outsource the training process. However, the externally trained DNNs can potentially be backdoor attacked. It is crucial to defend against such attacks, i.e., to postprocess a suspicious model so that its backdoor behavior is mitigated while its normal prediction power on clean inputs remain uncompromised. To remove the abnormal backdoor behavior, existing methods mostly rely on additional labeled clean samples. However, such requirement may be unrealistic as the training data are often unavailable to end users. In this paper, we investigate the possibility of circumventing such barrier. We propose a novel defense method that does not require training labels. Through a carefully designed layer-wise weight re-initialization and knowledge distillation, our method can effectively cleanse backdoor behaviors of a suspicious network with negligible compromise in its normal behavior. In experiments, we show that our method, trained without labels, is on-par with state-of-the-art defense methods trained using labels. We also observe promising defense results even on out-of-distribution data. This makes our method very practical
    • …
    corecore