1,138 research outputs found

    Superconducting proximity effect to the block antiferromagnetism in Ky_{y}Fe2x_{2-x}Se2_{2}

    Get PDF
    Recent discovery of superconducting (SC) ternary iron selenides has block antiferromagentic (AFM) long range order. Many experiments show possible mesoscopic phase separation of the superconductivity and antiferromagnetism, while the neutron experiment reveals a sizable suppression of magnetic moment due to the superconductivity indicating a possible phase coexistence. Here we propose that the observed suppression of the magnetic moment may be explained due to the proximity effect within a phase separation scenario. We use a two-orbital model to study the proximity effect on a layer of block AFM state induced by neighboring SC layers via an interlayer tunneling mechanism. We argue that the proximity effect in ternary Fe-selenides should be large because of the large interlayer coupling and weak electron correlation. The result of our mean field theory is compared with the neutron experiments semi-quantitatively. The suppression of the magnetic moment due to the SC proximity effect is found to be more pronounced in the d-wave superconductivity and may be enhanced by the frustrated structure of the block AFM state.Comment: 6 pages, 6 figure

    Efficient Volumetric Method of Moments for Modeling Plasmonic Thin-Film Solar Cells with Periodic Structures

    Get PDF
    Metallic nanoparticles (NPs) support localized surface plasmon resonances (LSPRs), which enable to concentrate sunlight at the active layer of solar cells. However, full-wave modeling of the plasmonic solar cells faces great challenges in terms of huge computational workload and bad matrix condition. It is tremendously difficult to accurately and efficiently simulate near-field multiple scattering effects from plasmonic NPs embedded into solar cells. In this work, a preconditioned volume integral equation (VIE) is proposed to model plasmonic organic solar cells (OSCs). The diagonal block preconditioner is applied to different material domains of the device structure. As a result, better convergence and higher computing efficiency are achieved. Moreover, the calculation is further accelerated by two-dimensional periodic Green's functions. Using the proposed method, the dependences of optical absorption on the wavelengths and incident angles are investigated. Angular responses of the plasmonic OSCs show the super-Lambertian absorption on the plasmon resonance but near-Lambertian absorption off the plasmon resonance. The volumetric method of moments and explored physical understanding are of great help to investigate the optical responses of OSCs.Comment: 11 pages, 6 figure

    Controlling Entanglement Dynamics by Choosing Appropriate Ratio between Cavity-Fiber Coupling and Atom-Cavity Coupling

    Full text link
    The entanglement characteristics including the so-called sudden death effect between two identical two-level atoms trapped in two separate cavities connected by an optical fiber are studied. The results show that the time evolution of entanglement is sensitive not only to the degree of entanglement of the initial state but also to the ratio between cavity-fiber coupling () and atom-cavity coupling (). This means that the entanglement dynamics can be controlled by choosing specific v and g.Comment: 14pages, 3figures, conferenc

    Theory for charge and orbital density-wave states in manganite La0.5_{0.5}Sr1.5_{1.5}MnO4_4

    Get PDF
    We investigate the high temperature phase of layered manganites, and demonstrate that the charge-orbital phase transition without magnetic order in La0.5_{0.5}Sr1.5_{1.5}MnO4_4 can be understood in terms of the density wave instability. The orbital ordering is found to be induced by the nesting between segments of Fermi surface with different orbital characters. The simultaneous charge and orbital orderings are elaborated with a mean field theory. The ordered orbitals are shown to be dx2y2±d3z2r2d_{x^2-y^2} \pm d_{3z^2-r^2}.Comment: published versio

    Domain Wall Conduction in Calcium-Modified Lead Titanate for Polarization Tunable Photovoltaic Devices

    Get PDF
    Ferroelectric domain wall (DW) conduction, confirmed in recent experiments, has attracted intense attention due to its promising applications in optoelec- tronic devices. Herein, we provide theoretical evidence of electric conduction in Pb0.8Ca0.2TiO3 (PCT) DWs. The separation of charge accumulation in DWs, corresponding to the electronic conduction-band minimum (CBM) and valence-band maximum (VBM), weakens the tendency for the electron-hole recombination, thereby providing more efficient channels for charge transfer. We fabricate PCT-based functional photovoltaic devices with polarization tunable charge transfer to exploit the combined conduction and ferroelectric properties of the DW. The photovoltaic performance of the devices can be regu- lated by the alternation of ferroelectric domains in PCT, caused by variation of the external poling. Our work broadens the applicability of DW conduction and may inspire the future design of high-performance materials in photovoltaic devices

    Hidden Euclidean dynamical symmetry in the U(n+1) vibron model

    Full text link
    Based on the boson realization of the Euclidean algebras, it is found that the E(nn) dynamical symmetry (DS) may emerge at the critical point of the U(nn)-SO(n+1n+1) quantum phase transition. To justify this finding, we provide a detailed analysis of the critical dynamics in the U(n+1n+1) vibron model in both quantal and classical ways. It is further shown that the low-lying structure of 82^{82}Kr may serve as an excellent empirical realization of the E(5) DS in experiments

    Many versus one: the disorder operator and entanglement entropy in fermionic quantum matter

    Full text link
    Motivated by recent development of the concept of the disorder operator and its relation with entanglement entropy in bosonic systems, here we show the disorder operator successfully probes many aspects of quantum entanglement in fermionic many-body systems. From both analytical and numerical computations in free and interacting fermion systems in 1D and 2D, we find the disorder operator and the entanglement entropy exhibit similar universal scaling behavior, as a function of the boundary length of the subsystem, but with subtle yet important differences. In 1D they both follow the logL\log{L} scaling behavior with the coefficient determined by the Luttinger parameter for disorder operator, and the conformal central charge for entanglement entropy. In 2D they both show the universal LlogLL\log L scaling behavior in free and interacting Fermi liquid states, with the coefficients depending on the geometry of the Fermi surfaces. However at a 2D quantum critical point with non-Fermi-liquid state, extra symmetry information is needed in the design of the disorder operator, so as to reveal the critical fluctuations as does the entanglement entropy. Our results demonstrate the fermion disorder operator can be used to probe quantum many-body entanglement related to global symmetry, and provides new tools to explore the still largely unknown territory of highly entangled fermion quantum matter in 2 or higher dimensions.Comment: 13 pages, 7 figures with 8 pages supplemental materia
    corecore