911 research outputs found

    Charged bottomonium-like structures Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650)

    Full text link
    The observation of two charged bottomonium-like structures Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650) has stimulated extensive studies of the properties of Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650). In this talk, we briefly introduce the research status of Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650) combined with our theoretical progress.Comment: 6 pages, 1 table, 5 figures. Plenary talk given at the international conference The Fifth Asia-Pacific Conference on Few-Body Systems in Physics 2011 (APFB2011), Seoul, Republic of Korea, 22-26 August 201

    Spin-Peierls transition in an anisotropic two-dimensional XY model

    Full text link
    The two-dimensional Jordan-Wigner transformation is used to investigate the zero temperature spin-Peierls transition for an anisotropic two-dimensional XY model in adiabatic limit. The phase diagram between the dimerized (D) state and uniform (U) state is shown in the parameter space of dimensionless interchain coupling hh (=J/J)(=J_{\perp}/J) and spin-lattice coupling η\eta. It is found that the spin-lattice coupling η\eta must exceed some critical value ηc\eta_c in order to reach the D phase for any finite hh. The dependence of ηc\eta_c on hh is given by 1/lnh-1/\ln h for h0h\to 0 and the transition between U and D phase is of first-order for at least h>103h>10^{-3}.Comment: 2 eps figures, considerable revisions were mad

    Few-Body Systems Composed of Heavy Quarks

    Full text link
    Within the past ten years many new hadrons states were observed experimentally, some of which do not fit into the conventional quark model. I will talk about the few-body systems composed of heavy quarks, including the charmonium-like states and some loosely bound states.Comment: Plenary talk at the 20th International IUPAP Conference on Few-Body Problems in Physics, to appear in Few Body Systems (2013

    Polaronic Signatures in Mid-Infrared Spectra: Prediction for LaMnO3 and CaMnO3

    Full text link
    Hole-doped LaMnO3 and electron-doped CaMnO3 form self-trapped electronic states. The spectra of these states have been calculated using a two orbital (Mn eg Jahn-Teller) model, from which the non-adiabatic optical conductivity spectra are obtained. In both cases the optical spectrum contains weight in the gap region, whose observation will indicate the self-trapped nature of the carrier states. The predicted spectra are proportional to the concentration of the doped carriers in the dilute regime, with coefficients calculated with no further model parameters.Comment: 6 pages with 3 figures imbedde

    Investigation of the Jahn-Teller Transition in TiF3 using Density Functional Theory

    Full text link
    We use first principles density functional theory to calculate electronic and magnetic properties of TiF3 using the full potential linearized augmented plane wave method. The LDA approximation predicts a fully saturated ferromagnetic metal and finds degenerate energy minima for high and low symmetry structures. The experimentally observed Jahn-Teller phase transition at Tc=370K can not be driven by the electron-phonon interaction alone, which is usually described accurately by LDA. Electron correlations beyond LDA are essential to lift the degeneracy of the singly occupied Ti t2g orbital. Although the on-site Coulomb correlations are important, the direction of the t2g-level splitting is determined by the dipole-dipole interactions. The LDA+U functional predicts an aniferromagnetic insulator with an orbitally ordered ground state. The input parameters U=8.1 eV and J=0.9 eV for the Ti 3d orbital were found by varying the total charge on the TiF62_6^{2-} ion using the molecular NRLMOL code. We estimate the Heisenberg exchange constant for spin-1/2 on a cubic lattice to be approximately 24 K. The symmetry lowering energy in LDA+U is about 900 K per TiF3 formula unit.Comment: 7 pages, 9 figures, to appear in Phys. Rev.

    Possible Interpretations of DsJ+(2632)D_{sJ}^+(2632) If It Really Exists

    Full text link
    We analyze various possible interpretations of the narrow state DsJ+(2632)D_{sJ}^+(2632) observed by SELEX Collaboration recently, which lies above threshold and has abnormal decay pattern. These interpretations include: (1) several versions of tetraquarks; (2) conventional csˉc\bar s meson such as the first radial excitation of Ds(2112)D_s(2112) with abnormally large SU(3) symmetry breaking; (3) conventional csˉc\bar s meson with abnormally large η1\eta_1 coupling; (4) heavy hybrid meson. We discuss the physical implications of each interpretation. For example, if the existence of DsJ+(2632)D_{sJ}^+(2632) is confirmed as the first radial excitation of Ds(2112)D_s(2112) by other experiments, it will be helpful to look for (1) its SU(3) flavor partners DJ0,+(2530)D_{J}^{0,+}(2530); (2) its B-meson analogues BJ0,+(5840),BsJ+(5940)B_{J}^{0,+}(5840), B_{sJ}^+(5940); (3) S-wave two pion decay modes

    Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons

    Full text link
    Using data collected with the BESII detector at e+ee^{+}e^{-} storage ring Beijing Electron Positron Collider, the measurements of relative branching fractions for seven Cabibbo suppressed hadronic weak decays D0KK+D^0 \to K^- K^+, π+π\pi^+ \pi^-, KK+π+πK^- K^+ \pi^+ \pi^- and π+π+ππ\pi^+ \pi^+ \pi^- \pi^-, D+K0ˉK+D^+ \to \bar{K^0} K^+, KK+π+K^- K^+ \pi^+ and ππ+π+\pi^- \pi^+ \pi^+ are presented.Comment: 11 pages, 5 figure

    The σ\sigma pole in J/ψωπ+πJ/\psi \to \omega \pi^+ \pi^-

    Full text link
    Using a sample of 58 million J/ψJ/\psi events recorded in the BESII detector, the decay J/ψωπ+πJ/\psi \to \omega \pi^+ \pi^- is studied. There are conspicuous ωf2(1270)\omega f_2(1270) and b1(1235)πb_1(1235)\pi signals. At low ππ\pi \pi mass, a large broad peak due to the σ\sigma is observed, and its pole position is determined to be (541±39)(541 \pm 39) - ii (252±42)(252 \pm 42) MeV from the mean of six analyses. The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995
    corecore