171,798 research outputs found
Multitarget Tracking in Nonoverlapping Cameras Using a Reference Set
Tracking multiple targets in nonoverlapping cameras are challenging since the observations of the same targets are often separated by time and space. There might be significant appearance change of a target across camera views caused by variations in illumination conditions, poses, and camera imaging characteristics. Consequently, the same target may appear very different in two cameras. Therefore, associating tracks in different camera views directly based on their appearance similarity is difficult and prone to error. In most previous methods, the appearance similarity is computed either using color histograms or based on pretrained brightness transfer function that maps color between cameras. In this paper, a novel reference set based appearance model is proposed to improve multitarget tracking in a network of nonoverlapping cameras. Contrary to previous work, a reference set is constructed for a pair of cameras, containing subjects appearing in both camera views. For track association, instead of directly comparing the appearance of two targets in different camera views, they are compared indirectly via the reference set. Besides global color histograms, texture and shape features are extracted at different locations of a target, and AdaBoost is used to learn the discriminative power of each feature. The effectiveness of the proposed method over the state of the art on two challenging real-world multicamera video data sets is demonstrated by thorough experiments
The Relativistic Rotation
The classical rotation is not self-consistent in the framework of the special
theory of relativity. the Relativistic rotation is obtained, which takes the
relativistic effect into account. It is demonstrated that the angular frequency
of classical rotation is only valid in local approximation. The properties of
the relativistic rotation and the relativistic transverse Doppler shift are
discussed in this work
Privacy-Preserving Outsourcing of Large-Scale Nonlinear Programming to the Cloud
The increasing massive data generated by various sources has given birth to
big data analytics. Solving large-scale nonlinear programming problems (NLPs)
is one important big data analytics task that has applications in many domains
such as transport and logistics. However, NLPs are usually too computationally
expensive for resource-constrained users. Fortunately, cloud computing provides
an alternative and economical service for resource-constrained users to
outsource their computation tasks to the cloud. However, one major concern with
outsourcing NLPs is the leakage of user's private information contained in NLP
formulations and results. Although much work has been done on
privacy-preserving outsourcing of computation tasks, little attention has been
paid to NLPs. In this paper, we for the first time investigate secure
outsourcing of general large-scale NLPs with nonlinear constraints. A secure
and efficient transformation scheme at the user side is proposed to protect
user's private information; at the cloud side, generalized reduced gradient
method is applied to effectively solve the transformed large-scale NLPs. The
proposed protocol is implemented on a cloud computing testbed. Experimental
evaluations demonstrate that significant time can be saved for users and the
proposed mechanism has the potential for practical use.Comment: Ang Li and Wei Du equally contributed to this work. This work was
done when Wei Du was at the University of Arkansas. 2018 EAI International
Conference on Security and Privacy in Communication Networks (SecureComm
- …