5,637 research outputs found

    Strong Electron-Phonon Interaction and Colossal Magnetoresistance in EuTiO3_3

    Full text link
    At low temperatures, EuTiO3_3 system has very large resistivities and exhibits colossal magnetoresistance. Based on a first principle calculation and the dynamical mean-field theory for small polaron we have calculated the transport properties of EuTiO3_3. It is found that due to electron-phonon interaction the conduction band may form a tiny subband which is close to the Fermi level. The tiny subband is responsible for the large resistivity. Besides, EuTiO3_3 is a weak antiferromagnetic material and its magnetization would slightly shift the subband via exchange interaction between conduction electrons and magnetic atoms. Since the subband is close to the Fermi level, a slight shift of its position gives colossal magnetoresistance.Comment: 6 pages, 5 figure

    Distributed Contingency Analysis over Wide Area Network among Dispatch Centers

    Full text link
    Traditionally, a regional dispatch center uses the equivalent method to deal with external grids, which fails to reflect the interactions among regions. This paper proposes a distributed N-1 contingency analysis (DCA) solution, where dispatch centers join a coordinated computation using their private data and computing resources. A distributed screening method is presented to determine the Critical Contingency Set (DCCS) in DCA. Then, the distributed power flow is formulated as a set of boundary equations, which is solved by a Jacobi-Free Newton-GMRES (JFNG) method. During solving the distributed power flow, only boundary conditions are exchanged. Acceleration techniques are also introduced, including reusing preconditioners and optimal resource scheduling during parallel processing of multiple contingencies. The proposed method is implemented on a real EMS platform, where tests using the Southwest Regional Grid of China are carried out to validate its feasibility.Comment: 5 pages, 6 figures, 2017 IEEE PES General Meetin

    Top Quark Forward-Backward Asymmetry and Same-Sign Top Quark Pairs

    Full text link
    The top quark forward-backward asymmetry measured at the Tevatron collider shows a large deviation from standard model expectations. Among possible interpretations, a non-universal Z′Z^\prime model is of particular interest as it naturally predicts a top quark in the forward region of large rapidity. To reproduce the size of the asymmetry, the couplings of the Z′Z^\prime to standard model quarks must be large, inevitably leading to copious production of same-sign top quark pairs at the energies of the Large Hadron Collider (LHC). We explore the discovery potential for tttt and ttjttj production in early LHC experiments at 7-8 TeV and conclude that if {\it no} tttt signal is observed with 1 fb−1^{-1} of integrated luminosity, then a non-universal Z′Z^\prime alone cannot explain the Tevatron forward-backward asymmetry.Comment: Tevatron limit from same-sign tt search adde
    • …
    corecore