398,716 research outputs found
Magnetic field dependence of electronic properties of MoS quantum dots with different edges
Using the tight-binding approach, we investigate the energy spectrum of
square, triangular and hexagonal MoS quantum dots (QDs) in the presence of
a perpendicular magnetic field. Novel edge states emerge in MoS QDs, which
are distributed over the whole edge which we call ring states. The ring states
are robust in the presence of spin-orbit coupling (SOC). The corresponding
energy levels of the ring states oscillate as function of the perpendicular
magnetic field which are related to Aharonov-Bohm oscillations. Oscillations in
the magnetic field dependence of the energy levels and the peaks in the
magneto-optical spectrum emerge (disappear) as the ring states are formed
(collapsed). The period and the amplitude of the oscillation decreases with the
size of the MoS QDs.Comment: 11 pages, 9 figures, Accepted by Phys. Rev.
Calibration of the Pulsed Electroacoustic Technique in the Presence of Trapped Charge
The influence of pulse voltage on the accuracy of charge density distribution in the pulsed electroacoustic technique (PEA) is discussed. It is shown that significant error can be introduced if a low dc voltage and high pulse voltage are used to calibrate charge density. However, our main focus in the present paper is to deal with one of the practical situations where space charge exists in the material prior to any measurements. The conventional calibration method can no longer be used to calibrate charge density due to the interference by the charge on the electrode induced by space charge. A method has been proposed which is based on two measurements. Firstly, the sample containing charge is measured without any applied voltage. The second measurement is carried out with a small external applied voltage. The applied voltage should be small enough so there is no disturbance of the existing charge in the sample. The difference of the two measurements can be used for calibration. An additional advantage of the proposed method avoids the influence of the pulse voltage on calibration and therefore gives a more accurate representation of space charge. The proposed method has been validated
Dense blocks of energetic ions driven by multi-petawatt lasers
Laser-driven ion accelerators have the advantages of compact size, high
density, and short bunch duration over conventional accelerators. Nevertheless,
it is still challenging to simultaneously enhance the yield and quality of
laser-driven ion beams for practical applications. Here we propose a scheme to
address this challenge via the use of emerging multi-petawatt lasers and a
density-modulated target. The density-modulated target permits its ions to be
uniformly accelerated as a dense block by laser radiation pressure. In
addition, the beam quality of the accelerated ions is remarkably improved by
embedding the target in a thick enough substrate, which suppresses hot electron
refluxing and thus alleviates plasma heating. Particle-in-cell simulations
demonstrate that almost all ions in a solid-density plasma of a few microns can
be uniformly accelerated to about 25% of the speed of light by a laser pulse at
an intensity around 1022 W/cm2. The resulting dense block of energetic ions may
drive fusion ignition and more generally create matter with unprecedented high
energy density.Comment: 18 pages, 4 figure
Non-volatile Optical Switch Based on a GST-Loaded Directional Coupler
We present a non-volatile optical switch based on a directional coupler comprising a silicon-Ge2Sb2Te5 (GST) hybrid waveguide. The non-volatility of GST makes it attractive for reducing static power consumption in optical switching. Experimental results show that the optical switch has an extinction ratio of >20 dB in the bar state and >25 dB in the cross state around 1578 nm wavelength. The insertion loss is 2 dB and 7 dB for the bar and cross states, respectively
Density-Dependent Response of an Ultracold Plasma to Few-Cycle Radio-Frequency Pulses
Ultracold neutral plasmas exhibit a density-dependent resonant response to
applied radio-frequency (RF) fields in the frequency range of several MHz to
hundreds of MHz for achievable densities. We have conducted measurements where
short bursts of RF were applied to these plasmas, with pulse durations as short
as two cycles. We still observed a density-dependent resonant response to these
short pulses. However, the too rapid timescale of the response, the dependence
of the response on the sign of the driving field, the response as the number of
pulses was increased, and the difference in plasma response to radial and
axially applied RF fields are inconsistent with the plasma response being due
to local resonant heating of electrons in the plasma. Instead, our results are
consistent with rapid energy transfer from collective motion of the entire
electron cloud to electrons in high-energy orbits. In addition to providing a
potentially more robust way to measure ultracold neutral plasma densities,
these measurements demonstrate the importance of collective motion in the
energy transport in these systems.Comment: 5 pages, 4 figure
(2317) meson production at RHIC
Production of (2317) mesons in relativistic heavy ion collisions at
RHIC is studied. Using the quark coalescence model, we first determine the
initial number of (2317) mesons produced during hadronization of
created quark-gluon plasma. The predicted (2317) abundance depends
sensitively on the quark structure of the (2317) meson. An
order-of-magnitude larger yield is obtained for a conventional two-quark than
for an exotic four-quark (2317) meson. To include the hadronic effect
on the (2317) meson yield, we have evaluated the absorption cross
sections of the (2317) meson by pion, rho, anti-kaon, and vector
anti-kaon in a phenomenological hadronic model. Taking into consideration the
absorption and production of (2317) mesons during the hadronic stage of
heavy ion collisions via a kinetic model, we find that the final yield of
(2317) mesons remains sensitive to its initial number produced from the
quark-gluon plasma, providing thus the possibility of studying the quark
structure of the (2317) meson and its production mechanism in
relativistic heavy ion collisions.Comment: 12 pages, 6 figure
Comparison of the Geometrical Characters Inside Quark- and Gluon-jet Produced by Different Flavor Quarks
The characters of the angular distributions of quark jets and gluon jets with
different flavors are carefully studied after introducing the cone angle of
jets. The quark jets and gluon jets are identified from the 3-jet events which
are produced by Monte Carlo simulation Jetset7.4 in e+e- collisions at =91.2GeV. It turns out that the ranges of angular distributions of gluon jets
are obviously wider than that of quark jets at the same energies. The average
cone angles of gluon jets are much larger than that of quark jets. As the
multiplicity or the transverse momentum increases, the cone-angle distribution
without momentum weight of both the quark jet and gluon jet all increases, i.e
the positive linear correlation are present, but the cone-angle distribution
with momentum weight decreases at first, then increases when n > 4 or p_t > 2
GeV. The characters of cone angular distributions of gluon jets produced by
quarks with different flavors are the same, while there are obvious differences
for that of the quark jets with different flavors.Comment: 13 pages, 6 figures, to be published on the International Journal of
Modern Physics
Investigation of Partial Discharge in Solid Dielectric under DC Voltage
A partial discharge, or PD, is defined as an electrical discharge that is localized within only a part of the insulation between two separated conductors. Recent research on PD mainly focuses on the study of PD characteristics under AC voltage. Compared with DC, PD under AC is more serious and can be easily detected in terms of PD number. As the results of these concentrated research, the understanding of PD under AC condition has been significantly improved and features extracted from PD measurements have been used to diagnose the insulation condition of many power apparatus. Recently, rapid development in HVDC transmission and power grids connection, and widely applied DC cable and gas-insulated switchgear because of their benefit in long distance usage lead to an increasing concern about PD under DC. However, available study for the condition is little and related research is therefore necessary and essential for understanding the lifetime and reliability of apparatus. <br/
- …
