20,523 research outputs found

    Pressure Effect on the superconducting properties of LaO_{1-x}F_{x}FeAs(x=0.11) superconductor

    Full text link
    Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum slope of superconducting transition, was enhanced almost linearly by hydrostatic pressure, yielding a dT_c/dP of about 1.2 K/GPa. Differential diamagnetic susceptibility curves indicate that the underlying superconducting state is complicated. It is suggested that pressure plays an important role on pushing low T_c superconducting phase toward the main (optimal) superconducting phase.Comment: 7 pages, 4 figure

    Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China

    Get PDF
    The chemical composition of 39 cloud samples and droplet size distributions in 24 cloud events were investigated at the summit of Mt. Tai from July to October 2014. Inorganic ions, organic acids, metals, HCHO, H2O2, sulfur( IV), organic carbon, and elemental carbon as well as pH and electrical conductivity were analyzed. The acidity of the cloud water significantly decreased from a reported value of pH 3.86 during 2007-2008 (Guo et al., 2012) to pH 5.87 in the present study. The concentrations of nitrate and ammonium were both increased since 2007-2008, but the overcompensation of ammonium led to an increase in the mean pH value. The microphysical properties showed that cloud droplets were smaller than 26.0 μm and most were in the range of 6.0-9.0 μm at Mt. Tai. The maximum droplet number concentration (Nd) was associated with a droplet size of 7.0 μm. High liquid water content (LWC) values could facilitate the formation of larger cloud droplets and broadened the droplet size distribution. Cloud droplets exhibited a strong interaction with atmospheric aerosols. Higher PM2.5 levels resulted in higher concentrations of water-soluble ions and smaller sizes with increased numbers of cloud droplets. The lower pH values were likely to occur at higher PM2.5 concentrations. Clouds were an important sink for soluble materials in the atmosphere. The dilution effect of cloud water should be considered when estimating concentrations of soluble components in the cloud phase

    Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China

    Get PDF
    The chemical composition of 39 cloud samples and droplet size distributions in 24 cloud events were investigated at the summit of Mt. Tai from July to October 2014. Inorganic ions, organic acids, metals, HCHO, H2O2, sulfur(IV), organic carbon, and elemental carbon as well as pH and electrical conductivity were analyzed. The acidity of the cloud water significantly decreased from a reported value of pH 3.86 during 2007–2008 (Guo et al., 2012) to pH 5.87 in the present study. The concentrations of nitrate and ammonium were both increased since 2007–2008, but the overcompensation of ammonium led to an increase in the mean pH value. The microphysical properties showed that cloud droplets were smaller than 26.0 µm and most were in the range of 6.0–9.0 µm at Mt. Tai. The maximum droplet number concentration (Nd) was associated with a droplet size of 7.0 µm. High liquid water content (LWC) values could facilitate the formation of larger cloud droplets and broadened the droplet size distribution. Cloud droplets exhibited a strong interaction with atmospheric aerosols. Higher PM2. 5 levels resulted in higher concentrations of water-soluble ions and smaller sizes with increased numbers of cloud droplets. The lower pH values were likely to occur at higher PM2. 5 concentrations. Clouds were an important sink for soluble materials in the atmosphere. The dilution effect of cloud water should be considered when estimating concentrations of soluble components in the cloud phase

    Earthquake Forecast via Neutrino Tomography

    Full text link
    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for νˉe\bar \nu_e emitted from a reactor. The case for a νe\nu_e beam from a neutrino factory is also investigated, and it is noted that, because of the typically high energy associated with such neutrinos, the oscillation length is too large and the resultant variation is not practically observable. Our conclusion is that with the present reactor facilities and detection techniques, it is still a difficult task to make an earthquake forecast using such a scheme, though it seems to be possible from a theoretical point of view while ignoring some uncertainties. However, with the development of the geology, especially the knowledge about the fault zone, and with the improvement of the detection techniques, etc., there is hope that a medium-term earthquake forecast would be feasible.Comment: 6 pages, 4 figures, 1 tabl

    Nernst effect of the new iron-based superconductor LaO1x_{1-x}Fx_{x}FeAs

    Full text link
    We report the first Nernst effect measurement on the new iron-based superconductor LaO1x_{1-x}Fx_{x}FeAs (x=0.1)(x=0.1). In the normal state, the Nernst signal is negative and very small. Below TcT_{c} a large positive peak caused by vortex motion is observed. The flux flowing regime is quite large compared to conventional type-II superconductors. However, a clear deviation of the Nernst signal from normal state background and an anomalous depression of off-diagonal thermoelectric current in the normal state between TcT_{c} and 50 K are observed. We propose that this anomaly in the normal state Nernst effect could correlate with the SDW fluctuations.Comment: 8 pages, 4 figures; Latex file changed, references adde

    Superconductivity induced by Ni doping in BaFe2_2As2_2

    Full text link
    A series of 122 phase BaFe2x_{2-x}Nix_xAs2_2 (xx = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature TconT_c^{on} reaches a maximum of 20.5 K at xx = 0.096, and it drops to below 4 K as xx \geq 0.23. The negative thermopower in the normal state indicates that electron-like charge carrier indeed dominates in this system. This Ni-doped system provides another example of superconductivity induced by electron doping in the 122 phase.Comment: 7 pages, 5 figures, revised version, added EDX result, accepted for special issue of NJ

    A framework for the successful implementation of food traceability systems in China

    Get PDF
    Implementation of food traceability systems in China faces many challenges due to the scale, diversity and complexity of China’s food supply chains. This study aims to identify critical success factors specific to the implementation of traceability systems in China. Twenty-seven critical success factors were identified in the literature. Interviews with managers at four food enterprises in a pre-study helped identify success criteria and five additional critical success factors. These critical success factors were tested through a survey of managers in eighty-three food companies. This study identifies six dimensions for critical success factors: laws, regulations and standards; government support; consumer knowledge and support; effective management and communication; top management and vendor support; and information and system quality

    The maximally entangled symmetric state in terms of the geometric measure

    Full text link
    The geometric measure of entanglement is investigated for permutation symmetric pure states of multipartite qubit systems, in particular the question of maximum entanglement. This is done with the help of the Majorana representation, which maps an n qubit symmetric state to n points on the unit sphere. It is shown how symmetries of the point distribution can be exploited to simplify the calculation of entanglement and also help find the maximally entangled symmetric state. Using a combination of analytical and numerical results, the most entangled symmetric states for up to 12 qubits are explored and discussed. The optimization problem on the sphere presented here is then compared with two classical optimization problems on the S^2 sphere, namely Toth's problem and Thomson's problem, and it is observed that, in general, they are different problems.Comment: 18 pages, 15 figures, small corrections and additions to contents and reference
    corecore