324,410 research outputs found

    Bianchi type I universes with dilaton and magnetic fields

    Get PDF
    We consider the dynamics of a Bianchi type I spacetime in the presence of dilaton and magnetic fields. The general solution of the Einstein-Maxwell dilaton field equations can be obtained in an exact parametric form. Depending on the numerical values of the parameters of the model there are three distinct classes of solutions. The time evolution of the mean anisotropy, shear and deceleration parameter is considered in detail and it is shown that a magnetic-dilaton anisotropic Bianchi type I geometry does not isotropize, the initial anisotropy being present in the universe for all times.Comment: 10 pages, 4 figure

    Concurrence of arbitrary dimensional bipartite quantum states

    Full text link
    We derive an analytical lower bound for the concurrence of a bipartite quantum state in arbitrary dimension. A functional relation is established relating concurrence, the Peres-Horodecki criterion and the realignment criterion. We demonstrate that our bound is exact for some mixed quantum states. The significance of our method is illustrated by giving a quantitative evaluation of entanglement for many bound entangled states, some of which fail to be identified by the usual concurrence estimation method.Comment: 4 pages, published versio

    Entanglement of Formation of Bipartite Quantum States

    Full text link
    We give an explicit tight lower bound for the entanglement of formation for arbitrary bipartite mixed states by using the convex hull construction of a certain function. This is achieved by revealing a novel connection among the entanglement of formation, the well-known Peres-Horodecki and realignment criteria. The bound gives a quite simple and efficiently computable way to evaluate quantitatively the degree of entanglement for any bipartite quantum state.Comment: 4 page

    Viscous dissipative effects in isotropic brane cosmology

    Get PDF
    We consider the dynamics of a viscous cosmological fluid in the generalized Randall-Sundrum model for an isotropic brane. To describe the dissipative effects we use the Israel-Hiscock-Stewart full causal thermodynamic theory. In the limiting case of a stiff cosmological fluid with pressure equal to the energy density, the general solution of the field equations can be obtained in an exact parametric form for a cosmological fluid with constant bulk viscosity and with a bulk viscosity coefficient proportional to the square root of the energy density, respectively. The obtained solutions describe generally non-inflationary brane worlds, starting from a singular state. During this phase of evolution the comoving entropy of the Universe is an increasing function of time, and thus a large amount of entropy is created in the brane world due to viscous dissipative processes.Comment: 15 pages, 11 figure

    Privacy-Preserving Outsourcing of Large-Scale Nonlinear Programming to the Cloud

    Full text link
    The increasing massive data generated by various sources has given birth to big data analytics. Solving large-scale nonlinear programming problems (NLPs) is one important big data analytics task that has applications in many domains such as transport and logistics. However, NLPs are usually too computationally expensive for resource-constrained users. Fortunately, cloud computing provides an alternative and economical service for resource-constrained users to outsource their computation tasks to the cloud. However, one major concern with outsourcing NLPs is the leakage of user's private information contained in NLP formulations and results. Although much work has been done on privacy-preserving outsourcing of computation tasks, little attention has been paid to NLPs. In this paper, we for the first time investigate secure outsourcing of general large-scale NLPs with nonlinear constraints. A secure and efficient transformation scheme at the user side is proposed to protect user's private information; at the cloud side, generalized reduced gradient method is applied to effectively solve the transformed large-scale NLPs. The proposed protocol is implemented on a cloud computing testbed. Experimental evaluations demonstrate that significant time can be saved for users and the proposed mechanism has the potential for practical use.Comment: Ang Li and Wei Du equally contributed to this work. This work was done when Wei Du was at the University of Arkansas. 2018 EAI International Conference on Security and Privacy in Communication Networks (SecureComm

    Verifying continuous-variable entanglement in finite spaces

    Full text link
    Starting from arbitrary Hilbert spaces, we reduce the problem to verify entanglement of any bipartite quantum state to finite dimensional subspaces. Hence, entanglement is a finite dimensional property. A generalization for multipartite quantum states is also given.Comment: 4 page

    Large-scale Reservoir Simulations on IBM Blue Gene/Q

    Full text link
    This paper presents our work on simulation of large-scale reservoir models on IBM Blue Gene/Q and studying the scalability of our parallel reservoir simulators. An in-house black oil simulator has been implemented. It uses MPI for communication and is capable of simulating reservoir models with hundreds of millions of grid cells. Benchmarks show that our parallel simulator are thousands of times faster than sequential simulators that designed for workstations and personal computers, and the simulator has excellent scalability

    Towards Long-endurance Flight: Design and Implementation of a Variable-pitch Gasoline-engine Quadrotor

    Full text link
    Majority of today's fixed-pitch, electric-power quadrotors have short flight endurance (<< 1 hour) which greatly limits their applications. This paper presents a design methodology for the construction of a long-endurance quadrotor using variable-pitch rotors and a gasoline-engine. The methodology consists of three aspects. Firstly, the rotor blades and gasoline engine are selected as a pair, so that sufficient lift can be comfortably provided by the engine. Secondly, drivetrain and airframe are designed. Major challenges include airframe vibration minimization and power transmission from one engine to four rotors while keeping alternate rotors contra-rotating. Lastly, a PD controller is tuned to facilitate preliminary flight tests. The methodology has been verified by the construction and successful flight of our gasoline quadrotor prototype, which is designed to have a flight time of 2 to 3 hours and a maximum take-off weight of 10 kg.Comment: 6 page
    corecore