319,708 research outputs found
The finite-temperature thermodynamics of a trapped unitary Fermi gas within fractional exclusion statistics
We utilize a fractional exclusion statistics of Haldane and Wu hypothesis to
study the thermodynamics of a unitary Fermi gas trapped in a harmonic
oscillator potential at ultra-low finite temperature. The entropy per particle
as a function of the energy per particle and energy per particle versus
rescaled temperature are numerically compared with the experimental data. The
study shows that, except the chemical potential behavior, there exists a
reasonable consistency between the experimental measurement and theoretical
attempt for the entropy and energy per particle. In the fractional exclusion
statistics formalism, the behavior of the isochore heat capacity for a trapped
unitary Fermi gas is also analyzed.Comment: 6 pages, 6 figure
Electronic charge reconstruction of doped Mott insulators in multilayered nanostructures
Dynamical mean-field theory is employed to calculate the electronic charge
reconstruction of multilayered inhomogeneous devices composed of semi-infinite
metallic lead layers sandwiching barrier planes of a strongly correlated
material (that can be tuned through the metal-insulator Mott transition). The
main focus is on barriers that are doped Mott insulators, and how the
electronic charge reconstruction can create well-defined Mott insulating
regions in a device whose thickness is governed by intrinsic materials
properties, and hence may be able to be reproducibly made.Comment: 9 pages, 8 figure
A Two-Step Etching Method to Fabricate Nanopores in Silicon
A cost effectively method to fabricate nanopores in silicon by only using the
conventional wet-etching technique is developed in this research. The main
concept of the proposed method is a two-step etching process, including a
premier double-sided wet etching and a succeeding track-etching. A special
fixture is designed to hold the pre-etched silicon wafer inside it such that
the track-etching can be effectively carried out. An electrochemical system is
employed to detect and record the ion diffusion current once the pre-etched
cavities are etched into a through nanopore. Experimental results indicate that
the proposed method can cost effectively fabricate nanopores in silicon.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Understanding the Protected Nodes and Collapse of the Fermi Arcs in Underdoped Cuprate Superconductors
We show how recent angle resolved photoemission measurements addressing the
Fermi arcs in the cuprates reveal a very natural phenomenological description
of the complex superfluid phase. Importantly, this phenomenology is consistent
with a previously presented microscopic theory. By distinguishing the order
parameter and the excitation gap, we are able to demonstrate how the collapse
of the arcs below into well defined nodes is associated with the
\emph{smooth} emergence of superconducting coherence. Comparison of this theory
with experiment shows good semi-quantitative agreement.Comment: 4 pages, 4 figures, replaced with updated versio
- …