232,979 research outputs found

    Constant Approximation for kk-Median and kk-Means with Outliers via Iterative Rounding

    Full text link
    In this paper, we present a new iterative rounding framework for many clustering problems. Using this, we obtain an (α1+ϵ≤7.081+ϵ)(\alpha_1 + \epsilon \leq 7.081 + \epsilon)-approximation algorithm for kk-median with outliers, greatly improving upon the large implicit constant approximation ratio of Chen [Chen, SODA 2018]. For kk-means with outliers, we give an (α2+ϵ≤53.002+ϵ)(\alpha_2+\epsilon \leq 53.002 + \epsilon)-approximation, which is the first O(1)O(1)-approximation for this problem. The iterative algorithm framework is very versatile; we show how it can be used to give α1\alpha_1- and (α1+ϵ)(\alpha_1 + \epsilon)-approximation algorithms for matroid and knapsack median problems respectively, improving upon the previous best approximations ratios of 88 [Swamy, ACM Trans. Algorithms] and 17.4617.46 [Byrka et al, ESA 2015]. The natural LP relaxation for the kk-median/kk-means with outliers problem has an unbounded integrality gap. In spite of this negative result, our iterative rounding framework shows that we can round an LP solution to an almost-integral solution of small cost, in which we have at most two fractionally open facilities. Thus, the LP integrality gap arises due to the gap between almost-integral and fully-integral solutions. Then, using a pre-processing procedure, we show how to convert an almost-integral solution to a fully-integral solution losing only a constant-factor in the approximation ratio. By further using a sparsification technique, the additive factor loss incurred by the conversion can be reduced to any ϵ>0\epsilon > 0

    Generalized reduction criterion for separability of quantum states

    Full text link
    A new necessary separability criterion that relates the structures of the total density matrix and its reductions is given. The method used is based on the realignment method [K. Chen and L.A. Wu, Quant. Inf. Comput. 3, 193 (2003)]. The new separability criterion naturally generalizes the reduction separability criterion introduced independently in previous work of [M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206 (1999)] and [N.J. Cerf, C. Adami and R.M. Gingrich, Phys. Rev. A 60, 898 (1999)]. In special cases, it recovers the previous reduction criterion and the recent generalized partial transposition criterion [K. Chen and L.A. Wu, Phys. Lett. A 306, 14 (2002)]. The criterion involves only simple matrix manipulations and can therefore be easily applied.Comment: 17 pages, 2 figure

    Homology and K-theory of the Bianchi groups

    Get PDF
    We reveal a correspondence between the homological torsion of the Bianchi groups and new geometric invariants, which are effectively computable thanks to their action on hyperbolic space. We use it to explicitly compute their integral group homology and equivariant KK-homology. By the Baum/Connes conjecture, which holds for the Bianchi groups, we obtain the KK-theory of their reduced C∗C^*-algebras in terms of isomorphic images of the computed KK-homology. We further find an application to Chen/Ruan orbifold cohomology. % {\it To cite this article: Alexander D. Rahm, C. R. Acad. Sci. Paris, Ser. I +++ (2011).
    • …
    corecore