research

Homology and K-theory of the Bianchi groups

Abstract

We reveal a correspondence between the homological torsion of the Bianchi groups and new geometric invariants, which are effectively computable thanks to their action on hyperbolic space. We use it to explicitly compute their integral group homology and equivariant KK-homology. By the Baum/Connes conjecture, which holds for the Bianchi groups, we obtain the KK-theory of their reduced CC^*-algebras in terms of isomorphic images of the computed KK-homology. We further find an application to Chen/Ruan orbifold cohomology. % {\it To cite this article: Alexander D. Rahm, C. R. Acad. Sci. Paris, Ser. I +++ (2011).

    Similar works