1,035 research outputs found

    Degradación de algunos compuestos volátiles de aceites de onagra bajo un proceso UV/TiO2

    Get PDF
    Off-flavor is one of the limiting factors in the quality and commercial acceptability of evening primrose oil (EPO). The results of this study demonstrated that ultraviolet light irradiated with titanium dioxide (UV/TiO2) was able to effectively reduce odorous aldehyde concentrations, which would produce undesired flavors. Specifically, reductions in the E-2-Decenal, 1-octen-3-ol and hexanoic acid in EPO reached 50, 75.2 and 61.4% after a UV/TiO2 process of 5 min, respectively. The odor active values (OAV) and hierarchical cluster analysis (HCA) showed that the result of the 5 min group was similar to that of the original oil. In addition, the physicochemical characteristics of EPO after processing did not change significantly. The result of the aroma profile analysis was consistent with the OAV and HCA results. Therefore, it has been concluded that 5 min UV/TiO2 treatment could degrade some volatile compounds and provide a potential deodorization method for industry.El mal sabor es uno de los factores limitantes de la calidad y aceptabilidad comercial del aceite de onagra (EPO). Los resultados de este estudio demostraron que la luz ultravioleta irradiada con dióxido de titanio (UV/TiO2) fue capaz de reducir eficazmente las concentraciones de aldehídos volátiles, que darían olores no deseados. En concreto, la reducción del E-2-Decenal, 1-octen-3-ol y el ácido hexanoico en EPO alcanzó el 50%, 75,2% y 61,4% respectivamente tras un proceso UV/TiO2 de 5 min. Los valores de olor activo (OAV) y el análisis de conglomerados jerárquicos (HCA) mostraron que el resultado del grupo de 5 min fue similar al del aceite original. Además, las características fisicoquímicas del EPO después del procesamiento no cambiaron significativamente. El resultado del análisis del perfil de aroma fue consistente con nuestro resultado de OAV y HCA. Por lo tanto, se ha llegado a la conclusión de que el tratamiento con UV/TiO2 durante 5 min podría degradar algunos compuestos volátiles y proporcionar un método de desodorización potencial para la industria

    Spin-dynamics simulations of the triangular antiferromagnetic XY model

    Full text link
    Using Monte Carlo and spin-dynamics methods, we have investigated the dynamic behavior of the classical, antiferromagnetic XY model on a triangular lattice with linear sizes L300L \leq 300. The temporal evolutions of spin configurations were obtained by solving numerically the coupled equations of motion for each spin using fourth-order Suzuki-Trotter decompositions of exponential operators. From space- and time-displaced spin-spin correlation functions and their space-time Fourier transforms we obtained the dynamic structure factor S(q,w)S({\bf q},w) for momentum q{\bf q} and frequency ω\omega. Below TKTT_{KT}(Kosterlitz-Thouless transition), both the in-plane (SxxS^{xx}) and the out-of-plane (SzzS^{zz}) components of S(q,ω)S({\bf q},\omega) exhibit very strong and sharp spin-wave peaks. Well above TKTT_{KT}, SxxS^{xx} and SzzS^{zz} apparently display a central peak, and spin-wave signatures are still seen in SzzS^{zz}. In addition, we also observed an almost dispersionless domain-wall peak at high ω\omega below TcT_{c}(Ising transition), where long-range order appears in the staggered chirality. Above TcT_{c}, the domain-wall peak disappears for all qq. The lineshape of these peaks is captured reasonably well by a Lorentzian form. Using a dynamic finite-size scaling theory, we determined the dynamic critical exponent zz = 1.002(3). We found that our results demonstrate the consistency of the dynamic finite-size scaling theory for the characteristic frequeny ωm\omega_{m} and the dynamic structure factor S(q,ω)S({\bf q},\omega) itself.Comment: 8 pages, RevTex, 10 figures, submitted to PR

    p-Type semiconducting properties in lithium-doped MgO single crystals

    Full text link
    The phenomenally large enhancement in conductivity observed when Li-doped MgO crystals are oxidized at elevated temperatures was investigated by dc and ac electrical measurements in the temperature interval 250-673 K. The concentration of ([Li]^{0}) centers (Li^{+} ions each with a trapped hole) resulting from oxidation was monitored by optical absorption measurements. Both dc and ac experiments provide consistent values for the bulk resistance. The electricalconductivity of oxidized MgO:Li crystals increases linearly with the concentration of ([Li]^{0}) centers. The conductivity is thermally activated with an activation energy of (0.70 +/- 0.01) eV, which is independent of the ([Li]^{0}) content. The \textit{standard semiconducting} mechanism satisfactorily explains these results. Free holes are the main contribution to band conduction as they are trapped at or released from the ([Li]^{0})-acceptor centers. In as-grown MgO:Li crystals, electrical current increases dramatically with time due to the formation of ([Li]^{0}) centers. The activation energy values between 1.3 and 0.7 eV are likely a combination of the activation energy for the creation of ([Li]^{0}) centers and the activation energy of ionization of these centers. Destruction of ([Li]^{0}) centers can be induced in oxidized crystals by application of an electric field due to Joule heating up to temperatures at which ([Li]^{0}) centers are not stable.Comment: LaTeX, 20 pages, 9 Encapsulated Postscript Format Figures, use the version 4.0 of REVTEX 4 macro packag

    Spurious states in the Faddeev formalism for few-body systems

    Get PDF
    We discuss the appearance of spurious solutions of few-body equations for Faddeev amplitudes. The identification of spurious states, i.e., states that lack the symmetry required for solutions of the Schroedinger equation, as well as the symmetrization of the Faddeev equations is investigated. As an example, systems of three and four electrons, bound in a harmonic-oscillator potential and interacting by the Coulomb potential, are presented.Comment: 11 pages. REVTE

    Experimental study of weak antilocalization effect in a high mobility InGaAs/InP quantum well

    Full text link
    The magnetoresistance associated with quantum interference corrections in a high mobility, gated InGaAs/InP quantum well structure is studied as a function of temperature, gate voltage, and angle of the tilted magnetic field. Particular attention is paid to the experimental extraction of phase-breaking and spin-orbit scattering times when weak anti- localization effects are prominent. Compared with metals and low mobility semiconductors the characteristic magnetic field Btr=/4eDτB_{tr} = \hbar/4eD \tau in high mobility samples is very small and the experimental dependencies of the interference effects extend to fields several hundreds of times larger. Fitting experimental results under these conditions therefore requires theories valid for arbitrary magnetic field. It was found, however, that such a theory was unable to fit the experimental data without introducing an extra, empirical, scale factor of about 2. Measurements in tilted magnetic fields and as a function of temperature established that both the weak localization and the weak anti-localization effects have the same, orbital origin. Fits to the data confirmed that the width of the low field feature, whether a weak localization or a weak anti-localization peak, is determined by the phase-breaking time and also established that the universal (negative) magnetoresistance observed in the high field limit is associated with a temperature independent spin-orbit scattering time.Comment: 13 pages including 10 figure

    Quantum algebra in the mixed light pseudoscalar meson states

    Full text link
    In this paper, we investigate the entanglement degrees of pseudoscalar meson states via quantum algebra Y(su(3)). By making use of transition effect of generators J of Y(su(3)), we construct various transition operators in terms of J of Y(su(3)), and act them on eta-pion-eta mixing meson state. The entanglement degrees of both the initial state and final state are calculated with the help of entropy theory. The diagrams of entanglement degrees are presented. Our result shows that a state with desired entanglement degree can be achieved by acting proper chosen transition operator on an initial state. This sheds new light on the connect among quantum information, particle physics and Yangian algebra.Comment: 9 pages, 3 figure

    A partial wave analysis of the centrally produced K+K- and K0K0 systems in pp interactions at 450 GeV/c and new information on the spin of the fJ(1710)

    Get PDF
    A partial wave analysis of the centrally produced K+K- and K0K0 channels has been performed in pp collisions using an incident beam momentum of 450 GeV/c. An unambiguous physical solution has been found in each channel. The striking feature is the observation of peaks in the S-wave corresponding to the f0(1500) and fJ(1710) with J = 0. The D-wave shows evidence for the f2(1270)/a2(1320), the f2(1525) and the f2(2150) but there is no evidence for a statistically significant contribution in the D-wave in the 1.7 GeV mass region.Comment: 15 pages, Latex, 5 Figure

    Improved Eavesdropping Detection Strategy in Quantum Direct Communication Protocol Based on Four-particle GHZ State

    Full text link
    In order to improve the eavesdropping detection efficiency in two-step quantum direct communication protocol, an improved eavesdropping detection strategy using four-particle GHZ state is proposed, in which four-particle GHZ state is used to detect eavesdroppers. During the security analysis, the method of the entropy theory is introduced, and two detection strategies are compared quantitatively by using the constraint between the information which eavesdropper can obtain and the interference introduced. If the eavesdroppers intend to obtain all information, the eavesdropping detection rate of the original two-step quantum direct communication protocol by using EPR pair block as detection particles is 50%; while the proposed strategy's detection rate is 88%. In the end, the security of the proposed protocol is discussed. The analysis results show that the eavesdropping detection strategy presented is more secure.Comment: 14 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:quant-ph/0308173 by different author

    Dimensionless cosmology

    Full text link
    Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant GG is entirely dimensionful. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of Big Bang Neucleosynthesis and recombination in a dimensionless manner. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any {\it one} of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding GG to the usual cosmological parameter set

    Precise absolute γ -ray and β- -decay branching intensities in the decay of Cu 2967

    Get PDF
    Absolute γ-ray emission probabilities in the β- decay of Cu67 were measured by means of γ-ray and β - decay singles and β - γ coincidences. The new results, together with the known decay scheme of Cu67, were used to determine absolute β - decay branching intensities. The present data differ significantly from previously published values. In addition, the half-life of the Iπ=12- isomer in Zn67 was measured as T1/2=9.37(4) μs, in a good agreement with earlier measurements. From the analysis of the Fermi-Kurie plots, Qβ-(g.s.)=560.3(10) keV was deduced, which differs from the previously measured value of 577(8) keV but is in good agreement with Qβ-(g.s.)=561.3(15) keV recommended in the latest Atomic Mass Evaluation
    corecore