282,154 research outputs found

    Macroscale boundary conditions for a non-linear heat exchanger

    Get PDF
    Multiscale modelling methodologies build macroscale models of materials with complicated fine microscale structure. We propose a methodology to derive boundary conditions for the macroscale model of a prototypical non-linear heat exchanger. The derived macroscale boundary conditions improve the accuracy of macroscale model. We verify the new boundary conditions by numerical methods. The techniques developed here can be adapted to a wide range of multiscale reaction-diffusion-advection systems

    Finite element formulation for linear thermoviscoelastic materials

    Get PDF
    Report presents the finite difference equations in time and finite element matrix equations in space for general linear thermovisoelastic problems. The equations are derived for a general three-dimensional body but are applicable to one- and two-dimensional configurations with minor changes

    Spin Structure of the Nucleon - Status and Recent Results

    Full text link
    After the initial discovery of the so-called "spin crisis in the parton model" in the 1980's, a large set of polarization data in deep inelastic lepton-nucleon scattering was collected at labs like SLAC, DESY and CERN. More recently, new high precision data at large x and in the resonance region have come from experiments at Jefferson Lab. These data, in combination with the earlier ones, allow us to study in detail the polarized parton densities, the Q^2 dependence of various moments of spin structure functions, the duality between deep inelastic and resonance data, and the nucleon structure in the valence quark region. Together with complementary data from HERMES, RHIC and COMPASS, we can put new limits on the flavor decomposition and the gluon contribution to the nucleon spin. In this report, we provide an overview of our present knowledge of the nucleon spin structure and give an outlook on future experiments. We focus in particular on the spin structure functions g_1 and g_2 of the nucleon and their moments.Comment: 69 pages, 46 figures. Report to be published in "Progress in Particle and Nuclear Physics". v2 with added references and minor edit

    Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK1/2 and cell proliferation via Gαq-mediated mechanism

    Get PDF
    Dimerization of G protein-coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin-converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C-terminal residues of vasoactive peptides including apelin-13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co-immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK1/2 activation and increased proliferation via activation of Gq α-subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK1/2 activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease. © 2014 The Authors

    Stripe-line coil for magnetic-field generation in bubble memory devices

    Get PDF
    Coil etched from conductive film has better field uniformity than wire-wound coils and less coil loss at high-frequency operation

    Open coil structure for bubble-memory-device packaging

    Get PDF
    Concept has several important advantages over close-wound system: memory and coil chips are separate and interchangeable; interconnections in coil level are eliminated by packing memory chip and electronics in single structure; and coil size can be adjusted to optimum value in terms of power dissipation and field uniformity
    corecore