421,638 research outputs found
Using Variable Dwell Time to Accelerate Gaze-Based Web Browsing with Two-Step Selection
In order to avoid the "Midas Touch" problem, gaze-based interfaces for
selection often introduce a dwell time: a fixed amount of time the user must
fixate upon an object before it is selected. Past interfaces have used a
uniform dwell time across all objects. Here, we propose a gaze-based browser
using a two-step selection policy with variable dwell time. In the first step,
a command, e.g. "back" or "select", is chosen from a menu using a dwell time
that is constant across the different commands. In the second step, if the
"select" command is chosen, the user selects a hyperlink using a dwell time
that varies between different hyperlinks. We assign shorter dwell times to more
likely hyperlinks and longer dwell times to less likely hyperlinks. In order to
infer the likelihood each hyperlink will be selected, we have developed a
probabilistic model of natural gaze behavior while surfing the web. We have
evaluated a number of heuristic and probabilistic methods for varying the dwell
times using both simulation and experiment. Our results demonstrate that
varying dwell time improves the user experience in comparison with fixed dwell
time, resulting in fewer errors and increased speed. While all of the methods
for varying dwell time resulted in improved performance, the probabilistic
models yielded much greater gains than the simple heuristics. The best
performing model reduces error rate by 50% compared to 100ms uniform dwell time
while maintaining a similar response time. It reduces response time by 60%
compared to 300ms uniform dwell time while maintaining a similar error rate.Comment: This is an Accepted Manuscript of an article published by Taylor &
Francis in the International Journal of Human-Computer Interaction on 30
March, 2018, available online:
http://www.tandfonline.com/10.1080/10447318.2018.1452351 . For an eprint of
the final published article, please access:
https://www.tandfonline.com/eprint/T9d4cNwwRUqXPPiZYm8Z/ful
Discovering cultural differences (and similarities) in facial expressions of emotion
Understanding the cultural commonalities and specificities of facial expressions of emotion remains a central goal of Psychology. However, recent progress has been stayed by dichotomous debates (e.g., nature versus nurture) that have created silos of empirical and theoretical knowledge. Now, an emerging interdisciplinary scientific culture is broadening the focus of research to provide a more unified and refined account of facial expressions within and across cultures. Specifically, data-driven approaches allow a wider, more objective exploration of face movement patterns that provide detailed information ontologies of their cultural commonalities and specificities. Similarly, a wider exploration of the social messages perceived from face movements diversifies knowledge of their functional roles (e.g., the ‘fear’ face used as a threat display). Together, these new approaches promise to diversify, deepen, and refine knowledge of facial expressions, and deliver the next major milestones for a functional theory of human social communication that is transferable to social robotics
Strongly Coupled Inflaton
We continue to investigate properties of the strongly coupled inflaton in a
setup introduced in arXiv:0807.3191 through the AdS/CFT correspondence. These
properties are qualitatively different from those in conventional inflationary
models. For example, in slow-roll inflation, the inflaton velocity is not
determined by the shape of potential; the fine-tuning problem concerns the dual
infrared geometry instead of the potential; the non-Gaussianities such as the
local form can naturally become large.Comment: 12 pages; v3, minor revision, comments and reference added, JCAP
versio
Radiative Bulk Viscosity
Viscous resistance to changes in the volume of a gas arises when different
degrees of freedom have different relaxation times. Collisions tend to oppose
the resulting departures from equilibrium and, in so doing, generate entropy.
Even for a classical gas of hard spheres, when the mean free paths or mean
flight times of constituent particles are long, we find a nonvanishing bulk
viscosity. Here we apply a method recently used to uncover this result for a
classical rarefied gas to radiative transfer theory and derive an expression
for the radiative stress tensor for a gray medium with absorption and Thomson
scattering. We determine the transport coefficients through the calculation of
the comoving entropy generation. When scattering dominates absorption, the bulk
viscosity becomes much larger than either the shear viscosity or the thermal
conductivity.Comment: 17 pages. Latex with referee style file of MNRAS (mn.sty). MNRAS, in
pres
Finite element formulation for linear thermoviscoelastic materials
Report presents the finite difference equations in time and finite element matrix equations in space for general linear thermovisoelastic problems. The equations are derived for a general three-dimensional body but are applicable to one- and two-dimensional configurations with minor changes
- …
