57,380 research outputs found

    Electronic structure interpolation via atomic orbitals

    Full text link
    We present an efficient scheme for accurate electronic structure interpolations based on the systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse kk-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals (LCAO) algorithms. We find that usually 16 -- 25 orbitals per atom can give an accuracy of about 10 meV compared to the full {\it ab initio} calculations. The current scheme has several advantages over the existing interpolation schemes. The scheme is easy to implement and robust which works equally well for metallic systems and systems with complex band structures. Furthermore, the atomic orbitals have much better transferability than the Shirley's basis and Wannier functions, which is very useful for the perturbation calculations

    Propagation of Exchange Bias in CoFe/FeMn/CoFe Trilayers

    Full text link
    CoFe/FeMn, FeMn/CoFe bilayers and CoFe/FeMn/CoFe trilayers were grown in magnetic field and at room temperature. The exchange bias field HebH_{eb} depends strongly on the order of depositions and is much higher at CoFe/FeMn than at FeMn/CoFe interfaces. By combining the two bilayer structures into symmetric CoFe/FeMn(tFeMnt_\mathrm{FeMn})/CoFe trilayers, HebtH_{eb}^t and HebbH_{eb}^b of the top and bottom CoFe layers, respectively, are both enhanced. Reducing tFeMnt_\mathrm{FeMn} of the trilayers also results in enhancements of both HebbH_{eb}^b and HebtH_{eb}^t. These results evidence the propagation of exchange bias between the two CoFe/FeMn and FeMn/CoFe interfaces mediated by the FeMn antiferromagnetic order

    Comparison of the Geometrical Characters Inside Quark- and Gluon-jet Produced by Different Flavor Quarks

    Full text link
    The characters of the angular distributions of quark jets and gluon jets with different flavors are carefully studied after introducing the cone angle of jets. The quark jets and gluon jets are identified from the 3-jet events which are produced by Monte Carlo simulation Jetset7.4 in e+e- collisions at s\sqrt s=91.2GeV. It turns out that the ranges of angular distributions of gluon jets are obviously wider than that of quark jets at the same energies. The average cone angles of gluon jets are much larger than that of quark jets. As the multiplicity or the transverse momentum increases, the cone-angle distribution without momentum weight of both the quark jet and gluon jet all increases, i.e the positive linear correlation are present, but the cone-angle distribution with momentum weight decreases at first, then increases when n > 4 or p_t > 2 GeV. The characters of cone angular distributions of gluon jets produced by quarks with different flavors are the same, while there are obvious differences for that of the quark jets with different flavors.Comment: 13 pages, 6 figures, to be published on the International Journal of Modern Physics

    Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors

    Get PDF
    We design, by invariant-based inverse engineering, driving fields that invert the population of a two-level atom in a given time, robustly with respect to dephasing noise and/or systematic frequency shifts. Without imposing constraints, optimal protocols are insensitive to the perturbations but need an infinite energy. For a constrained value of the Rabi frequency, a flat π\pi pulse is the least sensitive protocol to phase noise but not to systematic frequency shifts, for which we describe and optimize a family of protocols.Comment: 7 pages, 2 figure

    Carrier Dynamics in Submonolayer InGaAs/GaAs Quantum Dots

    Get PDF
    Carrier dynamics of submonolayer (SML) InGaAs/GaAs quantum dots (QDs) were studied by micro-photoluminecence (MPL), selectively excited photoluminescence (SEPL), and time-resolved photoluminescence (TRPL). MPL and SEPL show the coexistence of localized and delocalized states, and different local phonon modes. TRPL reveal shorter recombination lifetimes and longer capture times for the QDs with higher emission energy. This suggests that the smallest SML QDs are formed by perfectly vertically correlated 2D InAs islands, having the highest In content and the lowest emission energy, while a slight deviation from the perfectly vertical correlation produces larger QDs with lower In content and higher emission energy.Comment: 12 pages, 5 figure
    corecore