3,795 research outputs found

    4-Des­oxy-4β-(4-methoxy­carbonyl-1,2,3-triazol-1-yl)podophyllotoxin dichloro­methane solvate

    Get PDF
    In the title compound {systematic name: methyl 1-[12-oxo-10-(3,4,5-trimethoxy­phen­yl)-4,6,13-trioxa­tetra­cyclo­[7.7.0.03,7.011,15]hexa­deca-1,3(7),8-trien-16-yl]-1H-1,2,3-triazole-4-carboxyl­ate dichloro­methane solvate}, C26H25N3O9·CH2Cl2, the tetra­hydro­furan ring and the six-membered ring fused to it both display envelope conformations

    Isospin dependence of nucleon effective mass in Dirac Brueckner-Hartree-Fock approach

    Full text link
    The isospin dependence of the nucleon effective mass is investigated in the framework of the Dirac Brueckner-Hartree-Fock (DBHF) approach. The definition of nucleon scalar and vector effective masses in the relativistic approach is clarified. Only the vector effective mass is the quantity related to the empirical value extracted from the analysis in the nonrelatiistic shell and optical potentials. In the relativistic mean field theory, where the nucleon scalar and vector potentials are both energy independent, the neutron vector potential is stronger than that of proton in the neutron rich nuclear matter, which produces a smaller neutron vector effective mass than that of proton. It is pointed out that the energy dependence of nucleon potentials has to be considered in the analysis of the isospin dependence of the nucleon effective mass. In the DBHF the neutron vector effective mass is larger than that of proton once the energy dependence of nucleon potentials is considered. The results are consistent with the analysis of phenomenological isospin dependent optical potentials.Comment: 4 pages, 3 Postscript figure

    9-{[4-(Dimethyl­amino)­benz­yl]amino}-5-(3,4,5-trimeth­oxy­phen­yl)-5,5a,8a,9-tetra­hydro­furo[3′,4′:6,7]naphtho­[2,3-d][1,3]dioxol-6(8H)-one

    Get PDF
    In the title compound, C31H34N2O7, the fused tetra­hydro­furan and six-membered rings each display an envelope conformation. The dihedral angles between the benzene ring of the benzo[d][1,3]dioxole and the other two benzene rings are 89.68 (3) and 63.38 (2)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules

    Post-translational modifications and immune responses in liver cancer

    Get PDF
    Post-translational modification (PTM) refers to the covalent attachment of functional groups to protein substrates, resulting in structural and functional changes. PTMs not only regulate the development and progression of liver cancer, but also play a crucial role in the immune response against cancer. Cancer immunity encompasses the combined efforts of innate and adaptive immune surveillance against tumor antigens, tumor cells, and tumorigenic microenvironments. Increasing evidence suggests that immunotherapies, which harness the immune system’s potential to combat cancer, can effectively improve cancer patient prognosis and prolong the survival. This review presents a comprehensive summary of the current understanding of key PTMs such as phosphorylation, ubiquitination, SUMOylation, and glycosylation in the context of immune cancer surveillance against liver cancer. Additionally, it highlights potential targets associated with these modifications to enhance the response to immunotherapies in the treatment of liver cancer

    Symmetry of Dirac Equation and Corresponding Phenomenology

    Full text link
    It has been suggested that the high symmetries in the Schr\"odinger equation with the Coulomb or harmonic oscillator potentials may remain in the corresponding relativistic Dirac equation. If the principle is correct, in the Dirac equation the potential should have a form as (1+β)2V(r){(1+\beta)\over 2}V(r) where V(r)V(r) is e2r{-e^2\over r} for hydrogen atom and κr2\kappa r^2 for harmonic oscillator. However, in the case of hydrogen atom, by this combination the spin-orbit coupling term would not exist and it is inconsistent with the observational spectra of hydrogen atom, so that the symmetry of SO(4) must reduce into SU(2). The governing mechanisms QED and QCD which induce potential are vector-like theories, so at the leading order only vector potential exists. However, the higher order effects may cause a scalar fraction. In this work, we show that for QED, the symmetry restoration is very small and some discussions on the symmetry breaking are made. At the end, we briefly discuss the QCD case and indicate that the situation for QCD is much more complicated and interesting.Comment: 15pages, 3 figures, accepted by International Journal of Modern Physics

    Quantum LiDAR with Frequency Modulated Continuous Wave

    Full text link
    The range and speed of a moving object can be ascertained using the sensing technique known as light detection and ranging (LiDAR). It has recently been suggested that quantum LiDAR, which uses entangled states of light, can enhance the capabilities of LiDAR. Entangled pulsed light is used in prior quantum LiDAR approaches to assess both range and velocity at the same time using the pulses' time of flight and Doppler shift. The entangled pulsed light generation and detection, which are crucial for pulsed quantum LiDAR, are often inefficient. Here, we study a quantum LiDAR that operates on a frequency-modulated continuous wave (FMCW), as opposed to pulses. We first outline the design of the quantum FMCW LiDAR using entangled frequency-modulated photons in a Mach-Zehnder interferometer, and we demonstrate how it can increase accuracy and resolution for range and velocity measurements by n\sqrt{n} and nn, respectively, with nn entangled photons. We also demonstrate that quantum FMCW LiDAR may perform simultaneous measurements of the range and velocity without the need for quantum pulsed compression, which is necessary in pulsed quantum LiDAR. Since the generation of entangled photons is the only inefficient nonlinear optical process needed, the quantum FMCW LiDAR is better suited for practical implementations. Additionally, most measurements in the quantum FMCW LiDAR can be carried out electronically by down-converting optical signal to microwave region

    Three new species of Cortinarius section Delibuti (Cortinariaceae, Agaricales) from China

    Get PDF
    Three new species of Cortinarius section Delibuti, namely C. fibrillososalor, C. pseudosalor, and C. subtropicus are described as new to science based on morphological and phylogenetic evidences. Cortinarius pseudosalor is extremely morphologically similar to C. salor, but it differs from the latter by smaller coarsely verrucose basidiospores. Cortinarius fibrillososalor can be easily differentiated by its fibrillose pileus. The pileus of C. subtropicus becomes brown without lilac tint at maturity comparing with other members of section Delibuti. A combined dataset of ITS and LSU sequences was used for phylogenetic analysis. The phylogenetic reconstruction of section Delibuti revealed that these three new species clustered and formed independent lineages with full support respectively. A key to the three new species and related species of section Delibuti is provided in this work
    corecore