2,855 research outputs found

    The disappearance of a narrow Mg II absorption system in quasar SDSS J165501.31+260517.4

    Full text link
    In this letter, we present for the first time, the discovery of the disappearance of a narrow Mg II λλ2796,2803\lambda\lambda2796,2803 absorption system from the spectra of quasar SDSS J165501.31+260517.4 (ze=1.8671z_{\rm e}=1.8671). This absorber is located at zabs=1.7877z_{\rm abs} =1.7877, and has a velocity offset of 8,423 km s−18,423\rm ~km~s^{-1} with respect to the quasar. According to the velocity offset and the line variability, this narrow Mg II λλ2796,2803\lambda\lambda2796,2803 absorption system is likely intrinsic to the quasar. Since the corresponding UV continuum emission and the absorption lines of another narrow Mg II λλ2796,2803\lambda\lambda2796,2803 absorption system at zabs=1.8656z_{\rm abs}=1.8656 are very stable, we think that the disappearance of the absorption system is unlikely to be caused by the change in ionization of absorption gas. Instead, it likely arises from the motion of the absorption gas across the line of sight

    The Fundamental and Application of Transient Flashing Spray Cooling in Laser Dermatology

    Get PDF
    Cryogen spray cooling (CSC) has been successfully implemented in laser dermatology such as the treatment of port wine stain. It can protect epidermis from irreversible thermal injuries and increase laser energy, leading to the improvement in therapeutic outcomes. Different from traditional steady spray cooling, CSC is highly transient with short spurt duration (several tens of milliseconds). Besides, CSC can achieve flashing atomization and fine droplets with simple structure nozzles by rapid release of superheat. In this chapter, the mechanism of CSC flashing spray, spray and thermal characteristics of droplets, the measurement method of transient temperature and algorithms for heat flux estimation, and the dynamic surface heat transfer and its relation with spray characteristics are fully discussed. Finally, the heat transfer enhancement of CSC is introduced including alternative cryogens, new nozzles, and hypobaric pressure method to increase the cooling ability, which is essential to improve therapeutic outcome, especially for darkly pigmented human skin

    Bounds of the longest directed cycle length for minimal strong digraphs

    Get PDF
    AbstractIn this paper we present the upper and lower bounds of the longest directed cycle length for minimal strong digraphs in terms of the numbers of vertices and arcs. These bounds are both sharp. In addition, we give analogous results for minimal 2-edge connected graphs

    Evaluating Feynman integrals by the hypergeometry

    Full text link
    The hypergeometric function method naturally provides the analytic expressions of scalar integrals from concerned Feynman diagrams in some connected regions of independent kinematic variables, also presents the systems of homogeneous linear partial differential equations satisfied by the corresponding scalar integrals. Taking examples of the one-loop B0B_{_0} and massless C0C_{_0} functions, as well as the scalar integrals of two-loop vacuum and sunset diagrams, we verify our expressions coinciding with the well-known results of literatures. Based on the multiple hypergeometric functions of independent kinematic variables, the systems of homogeneous linear partial differential equations satisfied by the mentioned scalar integrals are established. Using the calculus of variations, one recognizes the system of linear partial differential equations as stationary conditions of a functional under some given restrictions, which is the cornerstone to perform the continuation of the scalar integrals to whole kinematic domains numerically with the finite element methods. In principle this method can be used to evaluate the scalar integrals of any Feynman diagrams.Comment: 39 pages, including 2 ps figure
    • …
    corecore