113 research outputs found
Heat transfer across a nanoscale pressurized air gap and its application in magnetic recording
In this study, we investigated how a thermally actuated air bearing slider heats up a fast-spinning storage disk through a highly pressurized nanoscale air gap in a magnetic recording system. A Euleriandescription- based computational approach is developed considering heat conduction through a pressurized air film and near-field radiation across the gap. A set of field equations that govern the air bearing dynamics, slider thermo-mechanics and disk heat dissipation are solved simultaneously through an iterative approach. A temperature field on the same order as the hot slider surface itself is found to be established in the disk. The effective local heat transfer coefficient is found to vary substantially with disk materials and linear speeds. This approach quantifies the magnitude of different thermal transport schemes and the accuracy is verified by an excellent agreement with our experiment, which measures the local slider temperature rise with a resistance temperature sensor. It also demonstrates an effective computational approach to treat transient thermal processes in a system of components with fast relative speed and different length scales. Finally, the investigated thermal transport mechanism leads to a substantial spacing change that has a significant impact on the spacing margin of today’s magnetic storage systems
Effects of hyperbaric oxygen on the osteogenic differentiation of mesenchymal stem cells
BACKGROUND: Hyperbaric oxygenation was shown to increase bone healing in a rabbit model. However, little is known about the regulatory factors and molecular mechanism involved.We hypothesized that the effect of hyperbaric oxygen (HBO) on bone formation is mediated via increases in the osteogenic differentiation of mesenchymal stem cells (MSCs) which are regulated by Wnt signaling. METHODS: The phenotypic characterization of the MSCs was analyzed by flow cytometric analysis. To investigate the effects of HBO on Wnt signaling and osteogenic differentiation of MSCs, mRNA and protein levels of Wnt3a, beta-catenin, GSK-3beta, Runx 2, as well as alkaline phosphatase activity, calcium deposition, and the intensity of von Kossa staining were analyzed after HBO treatment. To investigate the effects of HBO on Wnt processing and secretion, the expression of Wntless and vacuolar ATPases were quantified after HBO treatment. RESULTS: Cells expressed MSC markers such as CD105, CD146, and STRO-1. The mRNA and protein levels of Wnt3a, β-catenin, and Runx 2 were up-regulated, while GSK-3β was down-regulated after HBO treatment. Western blot analysis showed an increased β-catenin translocation with a subsequent stimulation of the expression of target genes after HBO treatment. The above observation was confirmed by small interfering (si)RNA treatment. HBO significantly increased alkaline phosphatase activity, calcium deposition, and the intensity of von Kossa staining of osteogenically differentiated MSCs. We further showed that HBO treatment increased the expression of Wntless, a retromer trafficking protein, and vacuolar ATPases to stimulate Wnt processing and secretion, and the effect was confirmed by siRNA treatment. CONCLUSIONS: HBO treatment increased osteogenic differentiation of MSCs via regulating Wnt processing, secretion, and signaling
Levels and values of circulating endothelial progenitor cells, soluble angiogenic factors, and mononuclear cell apoptosis in liver cirrhosis patients
BACKGROUND: The roles of circulating endothelial progenitor cell (EPC) and mononuclear cell apoptosis (MCA) in liver cirrhosis (LC) patients are unknown. Moreover, vascular endothelial growth factor (VEGF) and stromal cell-derived factor (SDF)-1α are powerful endogenous substances enhancing EPC migration into circulation. We assessed the level and function of EPCs [CD31/CD34 (E(1)), KDR/CD34 (E(2)), CXCR4/CD34 (E(3))], levels of MCA, VEGF and SDF-1α in circulation of LC patients. METHODS: Blood sample was prospectively collected once for assessing EPC level and function, MCA, and plasma levels of VEGF and SDF-1α using flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively, in 78 LC patients and 25 age- and gender-matched healthy controls. RESULTS: Number of EPCs (E(1), E(2), E(3)) was lower (all p < 0.0001), whereas SDF-1α level and MCA were higher (p < 0.001) in study patients compared with healthy controls. Number of EPCs (E(2), E(3)) was higher but MCA was lower (all p < 0.05) in Child's class A compared with Child's class B and C patients, although no difference in VEGF and SDF-1α levels were noted among these patients. Chronic hepatitis B and esophageal varices bleeding were independently, whereas chronic hepatitis C, elevated aspartate aminotransferase (AST), and decompensated LC were inversely and independently correlated with circulating EPC level (all p < 0.03). Additionally, angiogenesis and transwell migratory ability of EPCs were reduced in LC patients than in controls (all p < 0.001). CONCLUSION: The results of this study demonstrated that level, angiogenic capacity, and function of circulating EPCs were significantly reduced, whereas plasma levels of SDF-1α and circulating MCA were substantially enhanced in cirrhotic patients
High-Reliability Trigate Poly-Si Channel Flash Memory Cell With Si-Nanocrystal Embedded Charge-Trapping Layer
Abstract-This letter introduces a polycrystalline-silicon nanowire (NW) thin-film nonvolatile memory (NVM) with a self-assembled silicon-nanocrystal (Si-NC) embedded chargetrapping (CT) layer. This process is simple and compatible with conventional CMOS processes. Experimental results indicate that this NW NVM exhibits high reliability due to a deep-quantum-well structure and immunity of enhanced electric field underneath a disk-shaped Si-NC. After 10 000 P/E cycles, the memory window loss of the NVM with a Si-NC embedded CT layer is less than 12% until 10 4 s at 150 • C. Accordingly, a poly-Si thin-film transistor with a Si-NC embedded CT layer is highly promising for NVM applications. Index Terms-Nanocrystal (NC), nonvolatile memory (NVM), thin-film transistor (TFT)
Adipose-Derived Mesenchymal Stem Cell Protects Kidneys against Ischemia-Reperfusion Injury through Suppressing Oxidative Stress and Inflammatory Reaction
<p>Abstract</p> <p>Background</p> <p>Reactive oxygen species are important mediators exerting toxic effects on various organs during ischemia-reperfusion (IR) injury. We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) protect the kidney against oxidative stress and inflammatory stimuli in rat during renal IR injury.</p> <p>Methods</p> <p>Adult male Sprague-Dawley (SD) rats (n = 24) were equally randomized into group 1 (sham control), group 2 (IR plus culture medium only), and group 3 (IR plus immediate intra-renal administration of 1.0 × 10<sup>6 </sup>autologous ADMSCs, followed by intravenous ADMSCs at 6 h and 24 h after IR). The duration of ischemia was 1 h, followed by 72 hours of reperfusion before the animals were sacrificed.</p> <p>Results</p> <p>Serum creatinine and blood urea nitrogen levels and the degree of histological abnormalities were markedly lower in group 3 than in group 2 (all p < 0.03). The mRNA expressions of inflammatory, oxidative stress, and apoptotic biomarkers were lower, whereas the anti-inflammatory, anti-oxidative, and anti-apoptotic biomarkers were higher in group 3 than in group 2 (all p < 0.03). Immunofluorescent staining showed a higher number of CD31+, von Willebrand Factor+, and heme oxygenase (HO)-1+ cells in group 3 than in group 2 (all p < 0.05). Western blot showed notably higher NAD(P)H quinone oxidoreductase 1 and HO-1 activities, two indicators of anti-oxidative capacity, in group 3 than those in group 2 (all p < 0.04). Immunohistochemical staining showed higher glutathione peroxidase and glutathione reductase activities in group 3 than in group 2 (all p < 0.02)</p> <p>Conclusion</p> <p>ADMSC therapy minimized kidney damage after IR injury through suppressing oxidative stress and inflammatory response.</p
Intra-coronary administration of tacrolimus markedly attenuates infarct size and preserves heart function in porcine myocardial infarction
BACKGROUND: We test the hypothesis that intra-coronary tacrolimus administration can limit infarct size and preserve left ventricular ejection fraction (LVEF) after acute myocardial infarction (AMI) through ligating left anterior descending coronary artery (LAD) in mini-pigs. METHODS: Twelve male mini-pigs were randomized into AMI-saline (MI-only) group and AMI-tacrolimus (MI-Tac) group that received intra-coronary saline (3.0 mL) and tacrolimus (0.5 mg in 2.5 mL saline) injection, respectively, beyond site of ligation 30 minutes after LAD occlusion. RESULTS: Larger infarct area was noted in MI-only group (p < 0.001). Inflammatory biomarkers at protein [oxidative stress, tumor necrotic factor-α, nuclear factor-κB], gene (matrix metalloproteinase-9, plasminogen activator inhibitor-1), and cellular (CD40+, CD68+ inflammatory cells) levels were remarkably higher in MI-only animals (p < 0.01). Conversely, anti-inflammatory biomarkers at gene level (Interleukin-10), gene and protein level (endothelial nitric oxide synthase), and anti-oxidant biomarkers at both gene and protein levels [heme oxygenase 1, NAD(P)H:quinone oxidoreductase] were lower in MI-only group (p < 0.01). Number of apoptotic nuclei and apoptotic biomarkers expressions at gene and protein levels (Bax, caspase 3) were notably higher, whereas anti-apoptotic biomarkers at gene and protein levels (Bcl-2), LVEF, and fractional shortening were markedly lower in MI-only group (p < 0.001). CONCLUSION: Intra-coronary administration of tacrolimus significantly attenuated infarct size and preserved LV function
Reducing TRPC1 Expression through Liposome-Mediated siRNA Delivery Markedly Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension in a Murine Model
We tested the hypothesis that Lipofectamine siRNA delivery to deplete transient receptor potential cation channel (TRPC) 1 protein expression can suppress hypoxia-induced pulmonary arterial hypertension (PAH) in mice. Adult male C57BL/6 mice were equally divided into group 1 (normal controls), group 2 (hypoxia), and group 3 (hypoxia + siRNA TRPC1). By day 28, right ventricular systolic pressure (RVSP), number of muscularized arteries, right ventricle (RV), and lung weights were increased in group 2 than in group 1 and reduced in group 3 compared with group 2. Pulmonary crowded score showed similar pattern, whereas number of alveolar sacs exhibited an opposite pattern compared to that of RVSP in all groups. Protein expressions of TRPCs, HIF-1α, Ku-70, apoptosis, and fibrosis and pulmonary mRNA expressions of inflammatory markers were similar pattern, whereas protein expressions of antifibrosis and VEGF were opposite to the pattern of RVSP. Cellular markers of pulmonary DNA damage, repair, and smooth muscle proliferation exhibited a pattern similar to that of RVSP. The mRNA expressions of proapoptotic and hypertrophy biomarkers displayed a similar pattern, whereas sarcomere length showed an opposite pattern compared to that of RVSP in all groups. Lipofectamine siRNA delivery effectively reduced TRPC1 expression, thereby attenuating PAH-associated RV and pulmonary arteriolar remodeling
- …