80 research outputs found

    Regulation of NF-κB by PML and PML-RARα

    Get PDF
    Promyelocytic Leukemia (PML) is a nuclear protein that forms sub-nuclear structures termed nuclear bodies associated with transcriptionally active genomic regions. PML is a tumour suppressor and regulator of cell differentiation. We demonstrate that PML promotes TNFα-induced transcriptional responses by promoting NF-κB activity. TNFα-treated PML−/− cells show normal IκBα degradation and NF-κB nuclear translocation but significantly reduced NF-κB DNA binding and phosphorylation of NF-κB p65. We also demonstrate that the PML retinoic acid receptor-α (PML-RARα) oncofusion protein, which causes acute promyelocytic leukemia, inhibits TNFα induced gene expression and phosphorylation of NF-κB. This study establishes PML as an important regulator of NF-κB and demonstrates that PML-RARα dysregulates NF-κB

    Roles of Bcl-3 in the Pathogenesis of Murine Type 1 Diabetes

    Get PDF
    OBJECTIVE: It has long been recognized that autoimmunity is often associated with immunodeficiency. The mechanism underlying this paradox is not well understood. Bcl-3 (B-cell lymphoma 3) is an atypical member of the IκB (inhibitor of the nuclear factor-κB) family that is required for lymphoid organogenesis and germinal center responses. Mice deficient in Bcl-3 are immunodeficient because of the microarchitectural defects of their lymphoid organs. The goal of this study is to define the potential roles of Bcl-3 in type 1 diabetes. <p/>RESEARCH DESIGN AND METHODS: Bcl-3–deficient NOD mice were generated by backcrossing Bcl-3–deficient C57BL/6 mice to NOD mice. Spontaneous and induced type 1 diabetes were studied in these mice by both pathologic and immunologic means. The effect of Bcl-3 on inflammatory gene transcription was evaluated in a promoter reporter assay. <p/>RESULTS: We found that Bcl-3–deficient NOD and C57BL/6 mice were, paradoxically, more susceptible to autoimmune diabetes than wild-type mice. The increase in diabetes susceptibility was caused by Bcl-3 deficiency in hematopoietic cells but not nonhematopoietic cells. Bcl-3 deficiency did not significantly affect anti-islet Th1 or Th2 autoimmune responses, but markedly increased inflammatory chemokine and T helper 17 (Th17)-type cytokine expression. Upon transfection, Bcl-3 significantly inhibited the promoter activities of inflammatory chemokine and cytokine genes. <p/>CONCLUSIONS: These results indicate that in addition to mediating lymphoid organogenesis, Bcl-3 prevents autoimmune diabetes by inhibiting inflammatory chemokine and cytokine gene transcription. Thus, a single Bcl3 gene mutation leads to both autoimmunity and immunodeficiency

    Nuclear factor-kappaB: activation and regulation during toll-like receptor signaling

    No full text
    Toll-like receptors (TLRs) recognize distinct microbial components to initiate the innate and adaptive immune responses. TLR activation culminates in the expression of appropriate pro-inflammatory and immunomodulatory factors to meet pathogenic challenges. The transcription factor NF-kappaB is the master regulator of all TLR-induced responses and its activation is the pivotal event in TLR-mediated activation of the innate immune response. Many of the key molecular events required for TLR-induced NF-kappaB activation have been elucidated. However, much remains to be learned about the ability of TLRs to generate pathogen-specific responses using a limited number of transcription factors. This review will focus on our current understanding of NF-kappaB activation by TLRs and potential mechanisms for achieving a signal-specific response through NF-kappaB

    A novel mechanism of nuclear factor-kappaB regulation by adenoviral protein 14.7K

    No full text
    Viruses have evolved many different ways to evade immune attacks. The adenoviral E3 protein 14.7K effectively inhibits antiviral immunity and inflammation. However, the underlying mechanism for this effect is unclear. Here we show that 14.7K is a potent inhibitor of nuclear factor (NF)-kappaB transcriptional activity following Toll-like receptor (TLR) or tumour necrosis factor (TNF) receptor signalling. The inhibition of the NF-kappaB activity occurs downstream of IkappaBalpha degradation and NF-kappaB translocation into the nucleus. Analysis of NF-kappaB DNA binding reveals that 14.7K specifically inhibits p50 homodimer DNA binding and that this inhibition is mediated through the interaction of 14.7K with p50. We propose that 14.7K inhibits NF-kappaB activity through directly blocking p50 binding to DNA and that this is the basis for its anti-inflammatory properties. Our data also indicate a role for p50 homodimer-dependent transcription in inflammation

    Critical roles of TRAIL in hepatic cell death and hepatic inflammation

    Full text link

    Essential roles of c-Rel in TLR-induced IL-23 p19 gene expression in dendritic cells

    No full text
    IL-23 plays crucial roles in both immunity against pathogens and autoimmunity against self. Although it is well recognized that IL-23 expression is restricted to the myeloid lineage and is tightly regulated at the transcriptional level, the nature of transcription factors required for IL-23 expression is poorly understood. We report, in this study, that murine dendritic cells deficient in c-Rel, a member of the NF-kappaB family, are severely compromised in their ability to transcribe the p19 gene, one of the two genes that encode the IL-23 protein. The p19 gene promoter contains three putative NF-kappaB binding sites, two of which can effectively bind c-Rel as determined by chromatin immunoprecipitation and EMSA. Unexpectedly, mutation of either of these two c-Rel binding sites completely abolished the p19 promoter activity induced by five TLRs (2, 3, 4, 6, and 9) and four members of the NF-kappaB family (c-Rel, p65, p100, and p105). Based on these observations, we conclude that c-Rel controls IL-23 p19 gene expression through two kappaB sites in the p19 promoter, and propose a c-Rel-dependent enhanceosome model for p19 gene activation

    A novel mechanism of nuclear factor-kappaB regulation by adenoviral protein 14.7K

    No full text
    Viruses have evolved many different ways to evade immune attacks. The adenoviral E3 protein 14.7K effectively inhibits antiviral immunity and inflammation. However, the underlying mechanism for this effect is unclear. Here we show that 14.7K is a potent inhibitor of nuclear factor (NF)-kappaB transcriptional activity following Toll-like receptor (TLR) or tumour necrosis factor (TNF) receptor signalling. The inhibition of the NF-kappaB activity occurs downstream of IkappaBalpha degradation and NF-kappaB translocation into the nucleus. Analysis of NF-kappaB DNA binding reveals that 14.7K specifically inhibits p50 homodimer DNA binding and that this inhibition is mediated through the interaction of 14.7K with p50. We propose that 14.7K inhibits NF-kappaB activity through directly blocking p50 binding to DNA and that this is the basis for its anti-inflammatory properties. Our data also indicate a role for p50 homodimer-dependent transcription in inflammation
    corecore