747 research outputs found

    On Searching a Table Consistent with Division Poset

    Get PDF
    Suppose Pn={1,2,...,n}P_n=\{1,2,...,n\} is a partially ordered set with the partial order defined by divisibility, that is, for any two distinct elements i,jPni,j\in P_n satisfying ii divides jj, i<Pnji<_{P_n} j. A table An={aii=1,2,...,n}A_n=\{a_i|i=1,2,...,n\} of distinct real numbers is said to be \emph{consistent} with PnP_n, provided for any two distinct elements i,j{1,2,...,n}i,j\in \{1,2,...,n\} satisfying ii divides jj, ai<aja_i< a_j. Given an real number xx, we want to determine whether xAnx\in A_n, by comparing xx with as few entries of AnA_n as possible. In this paper we investigate the complexity τ(n)\tau(n), measured in the number of comparisons, of the above search problem. We present a 55n72+O(ln2n)\frac{55n}{72}+O(\ln^2 n) search algorithm for AnA_n and prove a lower bound (3/4+17/2160)n+O(1)({3/4}+{17/2160})n+O(1) on τ(n)\tau(n) by using an adversary argument.Comment: 16 pages, no figure; same results, representation improved, add reference

    Turbo-like Iterative Multi-user Receiver Design for 5G Non-orthogonal Multiple Access

    Full text link
    Non-orthogonal multiple access (NoMA) as an efficient way of radio resource sharing has been identified as a promising technology in 5G to help improving system capacity, user connectivity, and service latency in 5G communications. This paper provides a brief overview of the progress of NoMA transceiver study in 3GPP, with special focus on the design of turbo-like iterative multi-user (MU) receivers. There are various types of MU receivers depending on the combinations of MU detectors and interference cancellation (IC) schemes. Link-level simulations show that expectation propagation algorithm (EPA) with hybrid parallel interference cancellation (PIC) is a promising MU receiver, which can achieve fast convergence and similar performance as message passing algorithm (MPA) with much lower complexity.Comment: Accepted by IEEE 88th Vehicular Technology Conference (IEEE VTC-2018 Fall), 5 pages, 6 figure

    A Universal Receiver for Uplink NOMA Systems

    Full text link
    Given its capability in efficient radio resource sharing, non-orthogonal multiple access (NOMA) has been identified as a promising technology in 5G to improve the system capacity, user connectivity, and scheduling latency. A dozen of uplink NOMA schemes have been proposed recently and this paper considers the design of a universal receiver suitable for all potential designs of NOMA schemes. Firstly, a general turbo-like iterative receiver structure is introduced, under which, a universal expectation propagation algorithm (EPA) detector with hybrid parallel interference cancellation (PIC) is proposed (EPA in short). Link-level simulations show that the proposed EPA receiver can achieve superior block error rate (BLER) performance with implementation friendly complexity and fast convergence, and is always better than the traditional codeword level MMSE-PIC receiver for various kinds of NOMA schemes.Comment: This paper has been accepted by IEEE/CIC International Conference on Communications in China (ICCC 2018). 5 pages, 4 figure

    Nonequilibrium spin injection in monolayer black phosphorus

    Get PDF
    Monolayer black phosphorus (MBP) is an interesting emerging electronic material with a direct band gap and relatively high carrier mobility. In this work we report a theoretical investigation of nonequilibrium spin injection and spin-polarized quantum transport in MBP from ferromagnetic Ni contacts, in two-dimensional magnetic tunneling structures. We investigate physical properties such as the spin injection efficiency, the tunnel magnetoresistance ratio, spin-polarized currents, charge currents and transmission coefficients as a function of external bias voltage, for two different device contact structures where MBP is contacted by Ni(111) and by Ni(100). While both structures are predicted to give respectable spin-polarized quantum transport, the Ni(100)/MBP/Ni(100) trilayer has the superior properties where the spin injection and magnetoresistance ratio maintains almost a constant value against the bias voltage. The nonequilibrium quantum transport phenomenon is understood by analyzing the transmission spectrum at nonequilibrium.Comment: 6 pages, 6 figure

    DATE: Dual Assignment for End-to-End Fully Convolutional Object Detection

    Full text link
    Fully convolutional detectors discard the one-to-many assignment and adopt a one-to-one assigning strategy to achieve end-to-end detection but suffer from the slow convergence issue. In this paper, we revisit these two assignment methods and find that bringing one-to-many assignment back to end-to-end fully convolutional detectors helps with model convergence. Based on this observation, we propose {\em \textbf{D}ual \textbf{A}ssignment} for end-to-end fully convolutional de\textbf{TE}ction (DATE). Our method constructs two branches with one-to-many and one-to-one assignment during training and speeds up the convergence of the one-to-one assignment branch by providing more supervision signals. DATE only uses the branch with the one-to-one matching strategy for model inference, which doesn't bring inference overhead. Experimental results show that Dual Assignment gives nontrivial improvements and speeds up model convergence upon OneNet and DeFCN. Code: https://github.com/YiqunChen1999/date

    Testing for a difference in means of a single feature after clustering

    Full text link
    For many applications, it is critical to interpret and validate groups of observations obtained via clustering. A common validation approach involves testing differences in feature means between observations in two estimated clusters. In this setting, classical hypothesis tests lead to an inflated Type I error rate. To overcome this problem, we propose a new test for the difference in means in a single feature between a pair of clusters obtained using hierarchical or kk-means clustering. The test based on the proposed pp-value controls the selective Type I error rate in finite samples and can be efficiently computed. We further illustrate the validity and power of our proposal in simulation and demonstrate its use on single-cell RNA-sequencing data

    Essays on Macroeconomic Trends and Cycles

    Get PDF
    This dissertation describes two studies on macroeconomic trends and cycles. The first chapter studies the impact of Information Technology (IT) on the U.S. labor market. Over the past 30 years, employment and income shares of routine-intensive occupations have declined significantly relative to nonroutine occupations, and the overall U.S. labor income share has declined relative to capital. Furthermore, the decline of routine employment has been largely concentrated during recessions and ensuing recoveries. I build a model of unbalanced growth to assess the role of computerization and IT in driving these labor market trends and cycles. I augment a neoclassical growth model with exogenous IT progress as a form of Routine-Biased Technological Change (RBTC). I show analytically that RBTC causes the overall labor income share to follow a U-shaped time path, as the monotonic decline of routine labor share is increasingly offset by the monotonic rise of nonroutine labor share and the elasticity of substitution between the overall labor and capital declines under IT progress. Quantitatively, the model explains nearly all the divergence between routine and nonroutine labor in the period 1986-2014, as well as the mild decline of the overall labor share between 1986 and the early 2000s. However, the model with IT progress alone cannot explain the accelerated decline of labor income share after the early 2000s, suggesting that other factors, such as globalization, may have played a larger role in this period. Lastly, when nonconvex labor adjustment costs are present, the model generates a stepwise decline in routine labor hours, qualitatively consistent with the data. The timing of these trend adjustments can be significantly affected by aggregate productivity shocks and concentrated in recessions. The second chapter studies the implications of loss aversion on the business cycle dynamics of aggregate consumption and labor hours. Loss aversion refers to the fact that people are distinctively more sensitive to losses than to gains. Loss averse agents are very risk averse around the reference point and exhibit asymmetric responses to positive and negative income shocks. In an otherwise standard Real Business Cycle (RBC) model, I study loss aversion in both consumption alone and consumption-and-leisure together. My results indicate that how loss aversion affects business cycle dynamics depends critically on the nature of the reference point. If, for example, the reference point is status quo, loss aversion dramatically lowers the effective inter-temporal rate of substitution and induces excessive consumption smoothing. In contrast, if the reference point is fixed at a constant level, loss aversion generates a flat region in the decision rules and asymmetric impulse responses to technology shocks. Under a reasonable parametrization, loss aversion has the potential to generate asymmetric business cycles with deeper and more prolonged recessions
    corecore