30 research outputs found

    Strongly interacting matter from holographic QCD model

    Full text link
    We introduce the 5-dimension dynamical holographic QCD model, which is constructed in the graviton-dilaton-scalar framework with the dilaton background field Φ\Phi and the scalar field XX responsible for the gluodynamics and chiral dynamics, respectively. We review our results on the hadron spectra including the glueball and light meson spectra, QCD phase transitions and transport properties in the framework of the dynamical holographic QCD model.Comment: 8 pages, 8 figures, proceedings for QCD@Work2016, June 27-30,2014, Martina Franca, Italy. arXiv admin note: text overlap with arXiv:1409.843

    The electromagnetic form factors in the Nf=4N_{f}=4 holographic QCD

    Full text link
    In this study, we employ a modified soft-wall holographic model with four flavors to investigate the meson spectra, decay constants, electromagnetic form factors, and charge radius of various mesons. We obtain the spectra for vector, axial vector, and pseudoscalar mesons. Decay constants are calculated and compared with experimental and lattice QCD data. The pion and kaon electromagnetic form factors are compared with the experimental data, and a good agreement is achieved for the kaon at low Q2Q^{2}. For the charmed mesons, the electromagnetic form factors of the DD and DsD_{s} and electric form factors of the DD^{*} and DsD_{s}^{*} are well consistent with the lattice QCD data. Moreover, the electric, magnetic, and quadrupole form factors are predicted for the ρ\rho, KK^{*}, a1a_1, K1K_1, D1D_1, and Ds1D_{s1} mesons. Furthermore, the charge radius of the vector, axial vector, and pseudoscalars, including the strange and charmed mesons, are computed

    Spatial metabolomics in head and neck tumors: a review

    Get PDF
    The joint analysis of single-cell transcriptomics, proteomics, lipidomics, metabolomics and spatial metabolomics is continually transforming our understanding of the mechanisms of metabolic reprogramming in tumor cells. Since head and neck tumor is the sixth most common tumor in the world, the study of the metabolic mechanism of its occurrence, development and prognosis is still undeveloped. In the past decade, this field has witnessed tremendous technological revolutions and considerable development that enables major breakthroughs to be made in the study of human tumor metabolism. In this review, a comprehensive comparison of traditional metabolomics and spatial metabolomics has been concluded, and the recent progress and challenges of the application of spatial metabolomics combined multi-omics in the research of metabolic reprogramming in tumors are reviewed. Furthermore, we also highlight the advances of spatial metabolomics in the study of metabolic mechanisms of head and neck tumors, and provide an outlook of its application prospects

    Macrophages: plastic participants in the diagnosis and treatment of head and neck squamous cell carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) rank among the most prevalent types of head and neck cancer globally. Unfortunately, a significant number of patients receive their diagnoses at advanced stages, limiting the effectiveness of available treatments. The tumor microenvironment (TME) is a pivotal player in HNSCC development, with macrophages holding a central role. Macrophages demonstrate diverse functions within the TME, both inhibiting and facilitating cancer progression. M1 macrophages are characterized by their phagocytic and immune activities, while M2 macrophages tend to promote inflammation and immunosuppression. Striking a balance between these different polarization states is essential for maintaining overall health, yet in the context of tumors, M2 macrophages typically prevail. Recent efforts have been directed at controlling the polarization states of macrophages, paving the way for novel approaches to cancer treatment. Various drugs and immunotherapies, including innovative treatments based on macrophages like engineering macrophages and CAR-M cell therapy, have been developed. This article provides an overview of the roles played by macrophages in HNSCC, explores potential therapeutic targets and strategies, and presents fresh perspectives on the future of HNSCC treatment

    Electrical 180o switching of N\'eel vector in spin-splitting antiferromagnet

    Full text link
    Antiferromagnetic spintronics have attracted wide attention due to its great potential in constructing ultra-dense and ultra-fast antiferromagnetic memory that suits modern high-performance information technology. The electrical 180o switching of N\'eel vector is a long-term goal for developing electrical-controllable antiferromagnetic memory with opposite N\'eel vectors as binary "0" and "1". However, the state-of-art antiferromagnetic switching mechanisms have long been limited for 90o or 120o switching of N\'eel vector, which unavoidably require multiple writing channels that contradicts ultra-dense integration. Here, we propose a deterministic switching mechanism based on spin-orbit torque with asymmetric energy barrier, and experimentally achieve electrical 180o switching of spin-splitting antiferromagnet Mn5Si3. Such a 180o switching is read out by the N\'eel vector-induced anomalous Hall effect. Based on our writing and readout methods, we fabricate an antiferromagnet device with electrical-controllable high and low resistance states that accomplishes robust write and read cycles. Besides fundamental advance, our work promotes practical spin-splitting antiferromagnetic devices based on spin-splitting antiferromagnet.Comment: 19 pages, 4 figure

    Superconductivity in trilayer nickelate La4Ni3O10 under pressure

    Full text link
    Nickelates gained a great deal of attention due to their similar crystal and electronic structures of cuprates over the past few decades. Recently, superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La3Ni2O7, which belong to the Ruddlesden-Popper (RP) phases Lan+1NinO3n+1 with n = 2. In this work, we go further and find pressure-induced superconductivity in another RP phase La4Ni3O10 (n = 3) single crystals. Our angle-resolved photoemission spectroscopy (ARPES) experiment suggest that the electronic structure of La4Ni3O10 is very similar to that of La3Ni2O7. We find that the density-wave like anomaly in resistivity is progressively suppressed with increasing pressure. A typical phase diagram is obtained with the maximum Tc of 21 Kelvin. Our study sheds light on the exploration of unconventional superconductivity in nickelates.Comment: 16 pages, 5 figure
    corecore