79 research outputs found

    Quantifying traffic emission reductions and traffic congestion alleviation from high-capacity ride-sharing

    Full text link
    Despite the promising benefits that ride-sharing offers, there has been a lack of research on the benefits of high-capacity ride-sharing services. Prior research has also overlooked the relationship between traffic volume and the degree of traffic congestion and emissions. To address these gaps, this study develops an open-source agent-based simulation platform and a heuristic algorithm to quantify the benefits of high-capacity ride-sharing with significantly lower computational costs. The simulation platform integrates a traffic emission model and a speed-density traffic flow model to characterize the interactions between traffic congestion levels and emissions. The experiment results demonstrate that ride-sharing with vehicle capacities of 2, 4, and 6 passengers can alleviate total traffic congestion by approximately 3%, 4%, and 5%, and reduce traffic emissions of a ride-sourcing system by approximately 30%, 45%, and 50%, respectively. This study can guide transportation network companies in designing and managing more efficient and environment-friendly mobility systems

    Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy

    Get PDF
    Hydrogen peroxide is a signal molecule of the tumor, and its overproduction makes a higher concentration in tumor tissue compared to normal tissue. Based on the fact that peroxalates can make chemiluminescence with a high efficiency in the presence of hydrogen peroxide, we developed nanomicelles composed of peroxalate ester oligomers and fluorescent dyes, called peroxalate nanomicelles (POMs), which could image hydrogen peroxide with high sensitivity and stability. The potential application of the POMs in photodynamic therapy (PDT) for cancer was also investigated. It was found that the PDT-drug-loaded POMs were sensitive to hydrogen peroxide, and the PDT drug could be stimulated by the chemiluminescence from the reaction between POMs and hydrogen peroxide, which carried on a self-therapy of the tumor without the additional laser light resource

    Competition between High-Speed Rail and Airline Based on Game Theory

    Get PDF

    Coordinating supply and demand on an on-demand service platform with impatient customers

    Get PDF
    We consider an on-demand service platform using earning-sensitive independent providers with heterogeneous reservation price (for work participation) to serve its time and price-sensitive customers with heterogeneous valuation of the service. As such, the supply and demand are “endogenously” dependent on the price the platform charges its customers and the wage the platform pays its independent providers. We present an analytical model with endogenous supply (number of participating agents) and endogenous demand (customer request rate) to study this on-demand service platform. To coordinate endogenous demand with endogenous supply, we include the steady-state waiting time performance based on a queueing model in the customer utility function to characterize the optimal price and wage rates that maximize the profit of the platform. We first analyze a base model that uses a fixed payout ratio (i.e., the ratio of wage over price), and then extend our model to allow the platform to adopt a time-based payout ratio. We find that it is optimal for the platform to charge a higher price when demand increases; however, the optimal price is not necessarily monotonic when the provider capacity or the waiting cost increases. Furthermore, the platform should offer a higher payout ratio as demand increases, capacity decreases or customers become more sensitive to waiting time. We also find that the platform should lower its payout ratio as it grows with the number of providers and customer demand increasing at about the same rate. We use a set of actual data from a large on-demand ride-hailing platform to calibrate our model parameters in numerical experiments to illustrate some of our main insights
    corecore