2,835 research outputs found

    High Chern number quantum anomalous Hall phases in graphene ribbons with Haldane orbital coupling

    Full text link
    We investigate possible phase transitions among the different quantum anomalous Hall (QAH) phases in a zigzag graphene ribbon under the influence of the exchange field. The effective tight-binding Hamiltonian for graphene is made up of the hopping term, the Kane-Mele and Rashba spin-orbit couplings as well as the Haldane orbital term. We find that the variation of the exchange field results in bulk gap-closing phenomena and phase transitions occur in the graphene system. If the Haldane orbital coupling is absent, the phase transition between the chiral (anti-chiral) edge state ν=+2\nu=+2 (ν=−2\nu=-2) and the pseudo-quantum spin Hall state (ν=0\nu=0) takes place. Surprisingly, when the Haldane orbital coupling is taken into account, an intermediate QSH phase with two additional edge modes appears in between phases ν=+2\nu=+2 and ν=−2\nu=-2. This intermediate phase is therefore either the hyper-chiral edge state of high Chern number ν=+4\nu=+4 or anti-hyper-chiral edge state of ν=−4\nu=-4 when the direction of exchange field is reversed. We present the band structures, edge state wave functions and current distributions of the different QAH phases in the system. We also report the critical exchange field values for the QAH phase transitions.Comment: 4 figure

    Negative Binomial States of the Radiation Field and their Excitations are Nonlinear Coherent States

    Full text link
    We show that the well-known negative binomial states of the radiation field and their excitations are nonlinear coherent states. Excited nonlinear coherent state are still nonlinear coherent states with different nonlinear functions. We finally give exponential form of the nonlinear coherent states and remark that the binomial states are not nonlinear coherent states.Comment: 10 pages, no figure

    Probing Transverse Momentum Broadening via Dihadron and Hadron-jet Angular Correlations in Relativistic Heavy-ion Collisions

    Full text link
    Dijet, dihadron, hadron-jet angular correlations have been reckoned as important probes of the transverse momentum broadening effects in relativistic nuclear collisions. When a pair of high-energy jets created in hard collisions traverse the quark-gluon plasma produced in heavy-ion collisions, they become de-correlated due to the vacuum soft gluon radiation associated with the Sudakov logarithms and the medium-induced transverse momentum broadening. For the first time, we employ the systematical resummation formalism and establish a baseline calculation to describe the dihadron and hadron-jet angular correlation data in pppp and peripheral AAAA collisions where the medium effect is negligible. We demonstrate that the medium-induced broadening ⟨p⊥2⟩\langle p_\perp^2\rangle and the so-called jet quenching parameter q^\hat q can be extracted from the angular de-correlations observed in AAAA collisions. A global χ2\chi^2 analysis of dihadron and hadron-jet angular correlation data renders the best fit ⟨p⊥2⟩∼13 GeV2\langle p_\perp^2 \rangle \sim 13~\textrm{GeV}^2 for a quark jet at RHIC top energy. Further experimental and theoretical efforts along the direction of this work shall significantly advance the quantitative understanding of transverse momentum broadening and help us acquire unprecedented knowledge of jet quenching parameter in relativistic heavy-ion collisions.Comment: 6 pages, 3 figure
    • …
    corecore