28,121 research outputs found
A numerical investigation of self-sustained cavity flow oscillations
Two-dimensional (2-D) cavity flow physics and oscillation control were investigated through solutions of the Reynolds-Averaged Navier-Stokes equations coupled with a two-equation k-? turbulence model. Effects of the leading edge modifications including compression ramps, expansion surfaces and mass injection on supersonic cavity flow oscillation were investigated. Different flow mechanisms were observed at Mach 1.5 and 2.5. The study proposed a different explanation of the flow control mechanism when mass injection was used. An optimal mass injection rate was identified. A further improvement on the 2-D model was made by considering the effect of the turbulent viscous sub-layer using the Integration-to-the-wall boundary condition. The results confirmed that the shear layer instability reduced gradually from Mach 1.5 to 3.5. An improvement in SPL prediction was achieved. Dominant modes were also correctly predicted.The capability of the model was extended for the investigation of the 3-D compressible unsteady turbulent flow physics. It was validated against a hypersonic symmetric corner flow. The turbulent effect was modelled by a two-equation k-? turbulence model. A laminar cavity flow oscillation at Mach 1.5 was predicted. The result showed a self-sustained pressure oscillation. The predicted pressure oscillation was dominated by the second mode and its frequency was 5702H z which was close to the measured value of 5900H z. The SPL discrepancies with the measurements were within 2.3dB. A secondary symmetric flow pattern inside the cavity displayed a 3-D effect and showed the effect of the side wall within a spanwise distance of 2D. Further simulation of the turbulent cavity flow at Mach 1.5 showed a weak pressure oscillation, which indicated the RANS is sensitive to the choice of turbulence model. However, the surface flow pattern and surface pressure distribution were consistent with the measurements. The strongest surface pressure oscillation was observed near the rear corner on the centre plane. A secondary symmetric flow pattern also existed. A spanwise wave was found in the cavity. At the trailing plate, a flow separation was formed in the laminar boundary layer but was not observed in the turbulent boundary layer
The fragmenting past of the disk at the Galactic Center : The culprit for the missing red giants
Since 1996 we have known that the Galactic Center (GC) displays a core-like
distribution of red giant branch (RGB) stars starting at ~ 10", which poses a
theoretical problem, because the GC should have formed a segregated cusp of old
stars. This issue has been addressed invoking stellar collisions, massive black
hole binaries, and infalling star clusters, which can explain it to some
extent. Another observational fact, key to the work presented here, is the
presence of a stellar disk at the GC. We postulate that the reason for the
missing stars in the RGB is closely intertwined with the disk formation, which
initially was gaseous and went through a fragmentation phase to form the stars.
Using simple analytical estimates, we prove that during fragmentation the disk
developed regions with densities much higher than a homogeneous gaseous disk,
i.e. "clumps", which were optically thick, and hence contracted slowly. Stars
in the GC interacted with them and in the case of RGB stars, the clumps were
dense enough to totally remove their outer envelopes after a relatively low
number of impacts. Giant stars in the horizontal branch (HB), however, have
much denser envelopes. Hence, the fragmentation phase of the disk must have had
a lower impact in their distribution, because it was more difficult to remove
their envelopes. We predict that future deeper observations of the GC should
reveal less depletion of HB stars and that the released dense cores of RGB
stars will still be populating the GC.Comment: 5 pages, no figures, accepted for publication ApJ Lett
A rapid evolving region in the Galactic Center: Why S-stars thermalize and more massive stars are missing
The existence of "S-stars" within a distance of 1" from SgrA contradicts
our understanding of star formation, due to the forbiddingly violent
environment. A suggested possibility is that they form far and have been
brought in by some fast dynamical process, since they are young. Nonetheless,
all conjectured mechanisms either fail to reproduce their eccentricities
--without violating their young age-- or cannot explain the problem of "inverse
mass segregation": The fact that lighter stars (the S-stars) are closer to
SgrA and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out.
In this Letter we propose that the responsible for both, the distribution of
the eccentricities and the paucity of massive stars, is the Kozai-Lidov-{\em
like} resonance induced by a sub-parsec disk recently discovered in the
Galactic center. Considering that the disk probably extended to smaller radius
in the past, we show that in as short as (a few) years, the stars
populating the innermost 1" region would redistribute in angular-momentum space
and recover the observed "super-thermal" distribution. Meanwhile, WR and
O-stars in the same region intermittently attain ample eccentricities that will
lead to their tidal disruptions by the central massive black hole. Our results
provide new evidences that SgrA was powered several millions years ago by
an accretion disk as well as by tidal stellar disruptions.Comment: 5 pages, two figures, accepted for publication ApJ Lett
Continuous-time Markov decision processes under the risk-sensitive average cost criterion
This paper studies continuous-time Markov decision processes under the
risk-sensitive average cost criterion. The state space is a finite set, the
action space is a Borel space, the cost and transition rates are bounded, and
the risk-sensitivity coefficient can take arbitrary positive real numbers.
Under the mild conditions, we develop a new approach to establish the existence
of a solution to the risk-sensitive average cost optimality equation and obtain
the existence of an optimal deterministic stationary policy.Comment: 14 page
- …
