39 research outputs found

    Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells

    Get PDF
    Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5ā€²-to-3ā€² degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA

    N-Alkylation through the Borrowing Hydrogen Pathway Catalyzed by the Metal-Organic Framework-Supported Iridium-Monophosphine Complex

    Get PDF
    Further development in the area of medicinal chemistry requires facile and atom-economical C-N bond formation from readily accessible precursors using recyclable and reusable catalysts with low process toxicity. In this work, direct N-alkylation of amines with alcohols is performed with a series of Ir-phosphine-functionalized metal-organic framework (MOF) heterogeneous catalysts. The grafted monophosphine-Ir complexes were studied comprehensively to illustrate the ligand-dependent reactivity. The afforded MOF catalysts exhibited high reactivity and selectivity toward N-alkylamine product formation, especially UiO-66-PPh2-Ir, which showed 90% conversion after recycling with no catalyst residue remaining in the product after the reaction. Furthermore, analyses of the active catalyst, mechanistic studies, control experiments, and H2 adsorption tests are consistent with the conclusion that immobilization of the iridium complex on the MOF support enables the formation of the iridium-monophosphine complex and enhances its stability during the reaction. To illustrate the potential of the catalyst for application in medicinal chemistry, two pharmaceutical precursors were synthesized with up to 99% conversion and selectivity

    Solubilizing Metalā€“Organic Frameworks for an In Situ IR-SEC Study of a CO2 Reduction Catalyst

    Get PDF
    Metalā€“organic frameworks (MOFs) are typically assembled by bridging metal centers with organic linkers for various applications, including providing robust support for heterogeneous catalysts for CO2 reduction. In this study, we have demonstrated the solubilization of a MOF tethered to a CO2-reducing electrocatalyst and studied its fundamental electrochemistry in THF solvent using infrared spectroelectrochemistry (IR-SEC). The fundamental electrochemical properties of this immobilized catalyst were compared to that of its homogeneous counterpart. This approach provides a foundation for future experimental studies to bridge the gap between homogeneous and heterogeneous electrocatalysis

    3D Printing of Highly Stretchable and Sensitive Strain Sensors Using Graphene Based Composites

    No full text
    In this research, we present the development of 3D printed, highly stretchable and sensitive strain sensors using Graphene based composites. Graphene, a 2D material with unique electrical and piezoresistive properties, has already been used to create highly sensitive strain sensors. In this new study, by co-printing Graphene based Polylactic acid (PLA) with thermoplastic polyurethane (TPU), a highly stretchable and sensitive strain sensor based on Graphene composites can be 3D printed for the first time in strain sensors. The fabrication process of all materials is fully compatible with fused deposition modeling (FDM) based 3D printing method, which makes it possible to rapidly prototype and manufacture highly stretchable and sensitive strain sensors. The mechanical properties, electrical properties, sensitivity of the 3D printed sensors will be presented

    Stability Mechanism and Control Factors on Equipment Removal Area under ā€œGoaf-Roof-Coalā€ Structure

    No full text
    One of the main difficulties in longwall mining (LM) is the movement of mining equipment from one panel to the next panel during mining process. The shields of the LM face may be damaged by the collapse of the roof in shallow coal seam under the ā€œGoaf-Roof-Coalā€ (GRC) structure, especially when moving the shields from the current panel to the next panel. In order to solve this problem, the stability mechanism and its control factors during the LM equipment removal were investigated by using comprehensive methods including theoretical analysis, numerical simulation, and field validation based on the working conditions of Panel 31102 in Liangshuijing Coal Mine. The numerical simulations demonstrate that four different failure zones, shear failure zone, tension failure zone, partly elastic zone, and plastic failure zone, appear around the area due to the position of rock and the arrangements of the supports. The shear failure zone, which is controlled by shield working resistance and roof supporting strength, is the main cause of the failure in the removal area. To minimize the shear failure zone, several measures such as optimizing the end position for LM face, decreasing the width of removal area, and increasing the amount of cable support were taken to ensure the stability of surrounding rock in removal area, which have successfully controlled the damage of roof and equipment in Panel 31102. The field observation confirms that the proposed stability mechanism and control measures are effective under GRC structure

    Mechanical Performance of Eco-Friendly Sandwich Wall with Rice Husk Recycled Concrete

    No full text
    In the construction industry, an approach to alleviate the environmental problem is to apply ecological composite materials to the construction field. In this paper, the authors added the recycled aggregate and the rice husks to the concrete and measured the strengths of rich husk recycled concrete (RHRC) with different factors as well as determined the constitutive model. Subsequently, the flexural experiment of RHRC sandwich wall was carried out and analyzed in detail, which proved that it could bear the wind loads in normal use condition by the calculation of the experimental data. Then, the compressive experiment and analyses were conducted similarly. Moreover, the finite element method was applied to study the influence of tie bars on the flexural bearing capacity and to deduce the simplified calculation method of vertical bearing capacity of RHRC walls

    Optimal Layout Methods for Deep Chamber to Separate Coal and Gangue Based on the Weak Stratum Horizon

    No full text
    Aiming at the optimal layout of a deep chamber for coalā€“gangue separation (DCCS) based on the weak stratum horizon, an in-depth study was carried out by combining field investigations, model tests, and numerical simulations. Firstly, the main structural characteristics of DCCS were summarized. Then, the deformation and failure law for rocks surrounding DCCS were revealed under different horizons in the weak stratum. Finally, the optimal layout methods of DCCS based on the thickness and horizon in the weak stratum were determined in different in situ stresses, using the proposed comprehensive evaluation method for surrounding-rock stability. The results show that if the thickness of the weak stratum was small, the side near the roof of DCCS should be arranged along the weak stratum when the lateral pressure coefficient was Ī» Ī» > 1. The side near the floor of DCCS was arranged along the weak stratum when 0.6 ā‰¤ Ī» ā‰¤ 1 and the surrounding-rock stability was the best. If the thickness of the weak stratum was large, the side of DCCS should be arranged along the weak stratum when Ī» Ī» > 1. The floor of DCCS was arranged along the weak stratum when 0.6 ā‰¤ Ī» ā‰¤ 1, which was most favorable for the surrounding-rock control. The research results have important guiding significance for the spatial layout and support design of DCCS

    A Novel Carbon Dioxide Phase Transition Rock Breaking Technology: Theory and Application of Non-Explosive Blasting

    No full text
    As a non-explosive low-disturbance rock breaking technology, carbon dioxide phase transition blasting (CDPTB) is widely used in rock breaking projects such as pressure relief and permeability enhancement in coal mines, open-pit mining, road subgrade excavation, foundation pit excavation, etc. In this paper, the principle and equipment of CDPTB are systematically analyzed, and the characteristics of a reusable fracturing tube and disposable fracturing tube are determined. Different energy calculation methods are analyzed to determine the magnitude or equivalent explosive equivalent of CDPTB. According to the characteristics of impact stress wave and high-pressure gas, the cracking mechanism of CDPTB is proposed. Under the action of medium-impact stress, rock mass will produce multi-point cracking, and high-pressure gas will produce a gas wedge effect in the initial fracture, which determines the comprehensive action path of the stress wave and high-pressure gas. In terms of fracture characteristics, the fractal method is used to evaluate the macroscopic crack and fragment, microscopic fracture and pore characteristics. In terms of vibration characteristics, the attenuation law of CDPTB vibration with distance is statistically analyzed, and the Hilbert–Huang transform method is used to analyze the time–frequency characteristics of CDPTB. This rock breaking technology can be widely used in different projects, and the existing problems and future challenges are put forward
    corecore