86 research outputs found

    Short- and long-term effects of antiretroviral therapy on peripheral regulatory CD4+/CD25hi/CD127low T lymphocytes in people living with HIV/AIDS

    Get PDF
    The effect of antiretroviral therapy (ART) on CD4+/CD25hi/CD127low T lymphocyte changes in people living with HIV/AIDS (PLWHA) is still a matter of debate. From October 2015 to December 2019, peripheral blood from 70 cases of PLWHA were collected for the detection of CD4+/CD25hi/CD127low T lymphocytes by flow cytometry. Statistical analysis was performed to detect changes of CD4+/CD25hi/CD127low T lymphocytes in patients with different duration of ART and different treatment effects. We found that the number of CD4+/CD25hi/CD127low T lymphocytes in ART-naive PLWHA were lower than those in healthy volunteers (10.3±٦.٠ cells/uL vs 31.7±8.0 cells/uL, P < 0.05). CD4+/CD25hi/CD127low T lymphocyte counts increased to 17.8±٤.٠ cells/uL 6 months post-ART and 25.0±١١.٩ cells/uL 9 months post-ART, respectively (P < 0.05). There was no significant difference in CD4+/CD25hi/CD127low T lymphocyte counts between PLWHA who reached a complete immune reconstruction after ART and healthy volunteers. The growth of CD4+/CD25hi/CD127low T lymphocyte counts in patients who had baseline CD4 > 200 cells/uL was greater than those who had baseline CD4 ≤ 200 cells/uL (12.6±٤.٦ cells/uL vs 5.6±٥.٠ cells/uL, P = 0.027). CD4+/CD25hi/CD127low T lymphocyte counts were positively correlated with CD4+ T lymphocyte counts (r = 0.923, P < 0.001) and CD4+/CD8+ ratio (r = 0.741, P < 0.001), but were negatively correlated with HIV-VL (r = −0.648, P = 0.000). In conclusion, the results of the present study showed that changes in CD4+/CD25hi/CD127low T lymphocyte counts can be used to assess the effect of ART in PLWHA

    Changes of mitochondrial pathway in hypoxia/reoxygenation induced cardiomyocytes apoptosis.

    Get PDF
    The role of mitochondrial apoptotic pathway in cardiomyocytes subjected to hypoxia/reoxygenation(H/R) was studied. Cultured cardiomyocytes from neonatal Sprague-Dawley rats were exposed to hyoxia/reoxygenation, the apoptotic cardiomyocytes were stained with Annexin-V-FITC, Hoechst 33342 and TUNEL assay. Mitochondrial transmembrane potential of cardiomyocytes was assessed by JC-1 under fluorescence microscope, the expressions of bcl-2, bax, cytochrome c, apoptosis-induced factor (AIF), and caspase-3 were tested by western-blot. Our data showed apoptosis of cardiomyocytes was significantly increased during H/R, accompanied by translocation of bax to mitochondria, release of cytochrome c and AIF to cytosol. The results indicate that the mitochondrial-mediated apoptotic pathway is initiated as a result of H/R

    Responses of the field-aligned currents in the plasma sheet boundary layer to a geomagnetic storm

    Get PDF
    Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground. As an important medium of momentum and energy transport among the solar wind, magnetosphere, and ionosphere, field-aligned currents (FACs) can also be strengthened in storm times. This study shows the responses of FACs in the plasma sheet boundary layer (PSBL) observed by the Magnetospheric Multiscale (MMS) spacecraft in different phases of a large storm that lasted from May 27, 2017, to May 29, 2017. Most of the FACs were carried by electrons, and several FACs in the storm time also contained sufficient ion FACs. The FAC magnitudes were larger in the storm than in the quiet period, and those in the main phase were the strongest. In this case, the direction of the FACs in the main phase showed no preference for tailward or earthward, whereas the direction of the FACs in the recovery phase was mostly tailward. The results suggest that the FACs in the PSBL are closely related to the storm and could be driven by activities in the tail region, where the energy transported from the solar wind to the magnetosphere is stored and released as the storm is evolving. Thus, the FACs are an important medium of energy transport between the tail and the ionosphere, and the PSBL is a significant magnetosphere–ionosphere coupling region in the nightside

    Halophyte Nitraria billardieri CIPK25 promotes photosynthesis in Arabidopsis under salt stress

    Get PDF
    The calcineurin B-like (CBL)-interacting protein kinases (CIPKs), a type of plant-specific genes in the calcium signaling pathway, function in response to adverse environments. However, few halophyte derived CIPKs have been studied for their role in plant physiological and developmental adaptation during abiotic stresses, which inhibits the potential application of these genes to improve environmental adaptability of glycophytes. In this study, we constructed Nitraria billardieri CIPK25 overexpressing Arabidopsis and analyzed the seedling development under salt treatment. Our results show that Arabidopsis with NbCIPK25 expression exhibits more vigorous growth than wild type plants under salt condition. To gain insight into the molecular mechanisms underlying salt tolerance, we profiled the transcriptome of WT and transgenic plants via RNA-seq. GO and KEGG analyses revealed that upregulated genes in NbCIPK25 overexpressing seedlings under salt stress are enriched in photosynthesis related terms; Calvin-cycle genes including glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) are significantly upregulated in transgenic plants, which is consistent with a decreased level of NADPH (GAPDH substrate) and increased level of NADP+. Accordingly, NbCIPK25 overexpressing plants exhibited more efficient photosynthesis; soluble sugar and proteins, as photosynthesis products, showed a higher accumulation in transgenic plants. These results provide molecular insight into how NbCIPK25 promotes the expression of genes involved in photosynthesis, thereby maintaining plant growth under salt stress. Our finding supports the potential application of halophyte-derived NbCIPK25 in genetic modification for better salt adaptation

    Optimal scheduling management of the parking lot and decentralized charging of electric vehicles based on Mean Field Game

    No full text
    As an intermediary for the interaction between the grid and electric vehicles (EVs), the parking lot aggregator not only facilitates the exchange of electricity between EVs and the grid, but also brings benefits to all participants. This paper proposes a linear quadratic (LQ) Mean Field Game (MFG) theory with a major player to optimal scheduling management of the parking lot and formulate optimal decentralized charging control strategies for a large number of EVs, to achieve the minimization of EVs charging cost while maximizing the profit of the parking lot, but these two problems are a set of coupled control problems. In addition to modeling the interaction between the parking lot and the EVs as a finite-time dynamic game problem, the Nash Certainty Equivalence (NCE) of related optimization problems is also proposed, and the corresponding solution algorithm is designed. The control effects of the proposed dynamic game problem on the charging cycle, as well as the effects of parameters change and electricity price fluctuations on charging control are illustrated through numerical simulations

    The Full-Length Transcriptome Sequencing and Identification of Na+/H+ Antiporter Genes in Halophyte Nitraria tangutorum Bobrov

    No full text
    Nitraria tangutorum Bobrov is a halophyte that is resistant to salt and alkali and is widely distributed in northwestern China. However, its genome has not been sequenced, thereby limiting studies on this particular species. For species without a reference genome, the full-length transcriptome is a convenient and rapid way to obtain reference gene information. To better study N. tangutorum, we used PacBio single-molecule real-time technology to perform full-length transcriptome analysis of this halophyte. In this study, a total of 21.83 Gb of data were obtained, and 198,300 transcripts, 51,875 SSRs (simple sequence repeats), 55,574 CDS (coding sequence), and 74,913 lncRNAs (long non-coding RNA) were identified. In addition, using this full-length transcriptome, we identified the key Na+/H+ antiporter (NHX) genes that maintain ion balance in plants and found that these are induced to express under salt stress. The results indicate that the full-length transcriptome of N. tangutorum can be used as a database and be utilized in elucidating the salt tolerance mechanism of N. tangutorum

    Genome-wide discovery of CBL genes in Nitraria tangutorum Bobr. and functional analysis of NtCBL1-1 under drought and salt stress

    Get PDF
    Calcineurin B-like (CBL) proteins are a class of important Ca2+ receptors that play key roles in plant stress response. CBLs have been shown to participate in responses to abiotic stresses such as drought, salt, and cold in many plant species, including Arabidopsis and rice. However, little is known about their potential functions in the desert halophyte Nitraria tangutorum. Here, we have identified 11 CBL genes distributed across six chromosomes of N. tangutorum and categorized them into four groups through phylogenetic analysis. Synteny analysis showed that they have strong collinear relationships and have undergone purifying selection during their evolution. NtCBL promoter regions contain a variety of cis-acting elements related to hormone and environmental stress responses. Real-time quantitative PCR showed that the expression of NtCBLs differed significantly among various tissues and was upregulated by salt and drought stress. We chose NtCBL1-1 for an in-depth functional characterization and observed that transgenic Arabidopsis plants expressing NtCBL1-1 exhibited increased tolerance to both drought and salt stress. Compared to wild-type Arabidopsis, transgenic lines showed higher germination rates, slower chlorophyll degradation, more soluble proteins, and reduced accumulation of the oxidative stress marker malondialdehyde. These findings indicate that NtCBL1-1 plays a significant role in responding to drought and salt stress, laying the foundation for further investigations into the functional mechanisms of NtCBL genes in N. tangutorum
    • …
    corecore