4,423 research outputs found

    Improving Named Entity Recognition in Telephone Conversations via Effective Active Learning with Human in the Loop

    Full text link
    Telephone transcription data can be very noisy due to speech recognition errors, disfluencies, etc. Not only that annotating such data is very challenging for the annotators, but also such data may have lots of annotation errors even after the annotation job is completed, resulting in a very poor model performance. In this paper, we present an active learning framework that leverages human in the loop learning to identify data samples from the annotated dataset for re-annotation that are more likely to contain annotation errors. In this way, we largely reduce the need for data re-annotation for the whole dataset. We conduct extensive experiments with our proposed approach for Named Entity Recognition and observe that by re-annotating only about 6% training instances out of the whole dataset, the F1 score for a certain entity type can be significantly improved by about 25%.Comment: The final version of this paper will be published in the Proceedings of the DaSH Workshop @ EMNLP 2022. This paper is accepted for presentation in both DaSH@EMNLP 2022 and HiLL@NIPS 202

    Effects of annealing on the electrical properties of Fe-doped InP

    Get PDF
    The electrical properties of Fe-doped semi-insulating (SI) InP were investigated before and after annealing. The annealing conditions were controlled by changing either the temperature or duration. Correlation between the change of electrical parameters with the change of defect concentration at different annealing stage was observed. The defects and the change of the concentrations in Fe-doped SI InP were detected by room-temperature photocurrent spectroscopy.published_or_final_versio

    Thermally induced conduction type conversion in n-type InP

    Get PDF
    n-type semiconducting InP is changed into p-type semiconducting by short time annealing at 700 °C. Further annealing for a longer time leads to a second conduction-type conversion changing the material back to n type again but with a much higher resistivity. These conduction conversions indicate the formation of both acceptor and donor defects and the progressive variation of their relative concentrations during annealing. © 1999 American Institute of Physics.published_or_final_versio

    Positron-lifetime study of compensation defects in undoped semi-insulating InP

    Get PDF
    Positron-lifetime and infrared-absorption spectroscopies have been used to investigate the compensation defects that render undoped n-type liquid encapsulated Czochralski-grown InP semi-insulating under high-temperature annealing. The positron measurements, carried out over the temperature range of 25-300 K, reveal in the as-grown material a positron lifetime of 282±5 ps which we associate with either the isolated indium vacancy V 3- In or related hydrogen complexes. The shallow donor complex V InH 4, responsible for much of the n-type conductivity and the strong infrared absorption signal at 4320 nm, is ruled out as a significant trapping site on the grounds that its neutral state is present at too low a concentration. After annealing at 950°C, in conjunction with the disappearance of the V InH 4 infrared-absorption signal, trapping into V In-related centers is observed to increase slightly, and an additional positron trapping defect having a lifetime of 330 ps appears at a concentration of ∼10 16 cm -3, indicating divacancy trapping. These results support the recent suggestion that the V InH 4 complex present in as-grown InP dissociates during annealing, forming V InH (3-n)- n (0≤n≤3) complexes and that the recombination of V In with a phosphorus atom results in the formation of EL2-like deep donor P In antisite defect, which compensates the material. It is suggested that the divacancy formed on annealing is V InV P, and that this defect is probably a by-product of the P In antisite formation.published_or_final_versio

    Electrical and FT-IR measurements of undoped N-type INP materials grown from various stoichiometric melts

    Get PDF
    P-rich, In-rich and Stoichiometric undoped InP melts have been synthesed by phosphorus in-situ injection method. InP crystal ingots have been grown from these melts by Liquid Encapsulated Czochralski (LEC). Samples from these ingots grown from various Stoichiometric melts have been characterized by Hall Effect and Fourier Transform Infrared (FT-IR) spectroscopy measurements respectively. The Hall Effect measurement results indicate that the net carrier concentration of P-inch undoped InP is higher than that of In-rich and Stoichiometric undoped InP materials. FT-IR spectroscopy measurements reveal that there are intensive absorption peaks which have been proved to be hydrogen related indium vacancy complex V InH 4. By comparing FT-IR spectra, it is found that P-rich InP material has the most intensive absorption peak of V InH 4, while In-rich InP material has the weakest absorption peak.published_or_final_versio

    Optical Thermometry with Quantum Emitters in Hexagonal Boron Nitride.

    Full text link
    Nanoscale optical thermometry is a promising noncontact route for measuring local temperature with both high sensitivity and spatial resolution. In this work, we present a deterministic optical thermometry technique based on quantum emitters in nanoscale hexagonal boron nitride. We show that these nanothermometers show better performance than homologous, all-optical nanothermometers in both sensitivity and the range of working temperature. We demonstrate their effectiveness as nanothermometers by monitoring the local temperature at specific locations in a variety of custom-built microcircuits. This work opens new avenues for nanoscale temperature measurements and heat flow studies in miniaturized, integrated devices

    Native donors and compensation in Fe-doped liquid encapsulated Czochralski InP

    Get PDF
    Undoped and Fe-doped liquid encapsulated Czochralski (LEC) InP has been studied by Hall effect, current-voltage (I-V), and infrared absorption (IR) spectroscopy. The results indicate that a native hydrogen vacancy complex donor defect exists in as-grown LEC InP. By studying the IR results, it is found that the concentration of this donor defect in Fe-doped InP is much higher than that in undoped InP. This result is consistent with the observation that a much higher concentration of Fe 2+ than the apparent net donor concentration is needed to achieve the semi-insulating (SI) property in InP. By studying the I-V and IR results of Fe-doped InP wafers sliced from different positions on an ingot, the high concentration of Fe 2+ is found to correlate with the existence of this hydrogen complex. The concentration of this donor defect is high in wafers from the top of an ingot. Correspondingly, a higher concentration of Fe 2+ can be detected in these wafers. These results reveal the influence of the complex defect on the compensation and uniformity of Fe-doped SI InP materials. © 2001 American Institute of Physics.published_or_final_versio

    Heterotopic ossification after patellar tendon repair in a man with trisomy 8 mosaicism: a case report and literature review

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Heterotopic ossification is the abnormal formation of lamellar bone in soft tissue. Its presence jeopardizes functional outcome, impairs rehabilitation and increases costs due to subsequent surgical interventions.</p> <p>Case presentation</p> <p>We present a case of a 32-year-old African-American man with trisomy 8 mosaicism who developed severe heterotopic ossification of his right extensor mechanism subsequent to repair of a patellar tendon rupture.</p> <p>Conclusion</p> <p>To the best of our knowledge there are no prior reports of heterotopic ossification as a complication of patellar tendon repair. This case may suggest an association between trisomy 8 mosaicism and increased risk of heterotopic ossification.</p

    Formation of P In defect in annealed liquid-encapsulated Czochralski InP

    Get PDF
    Fourier transform infrared spectroscopy measurements have been carried out on liquid-encapsulated Czochralski-grown undoped InP wafers, which reproducibly become semi-insulating upon annealing in an ambient of phosphorus at 800-900°C. The measurements reveal a high concentration of hydrogen complexes in the form V InH 4 existing in the material before annealing in agreement with recent experimental studies. It is argued that the dominant and essential process producing the semi-insulating behavior is the compensation produced by an EL 2-like deep donor phosphorus antisite defect, which is formed by the dissociation of the hydrogen complexes during the process of annealing. The deep donor compensates acceptors, the majority of which are shallow residual acceptor impurities and deep hydrogen associated V In and isolated V In levels, produced at the first stage of the dissociation of the V InH 4 complex. The high concentration of indium vacancies produced by the dissociation are the precursor of the EL 2-like phosphorus antisite. These results show the importance of hydrogen on the electrical properties of InP and indicate that this largely results from low formation energy of the complex V InH 4 in comparison with that of an isolated V In. © 1998 American Institute of Physics.published_or_final_versio
    • …
    corecore