60 research outputs found

    East Learns from West: Asiatic Honeybees Can Understand Dance Language of European Honeybees

    Get PDF
    The honeybee waggle dance, through which foragers advertise the existence and location of a food source to their hive mates, is acknowledged as the only known form of symbolic communication in an invertebrate. However, the suggestion, that different species of honeybee might possess distinct ‘dialects’ of the waggle dance, remains controversial. Furthermore, it remains unclear whether different species of honeybee can learn from and communicate with each other. This study reports experiments using a mixed-species colony that is composed of the Asiatic bee Apis cerana cerana (Acc), and the European bee Apis mellifera ligustica (Aml). Using video recordings made at an observation hive, we first confirm that Acc and Aml have significantly different dance dialects, even when made to forage in identical environments. When reared in the same colony, these two species are able to communicate with each other: Acc foragers could decode the dances of Aml to successfully locate an indicated food source. We believe that this is the first report of successful symbolic communication between two honeybee species; our study hints at the possibility of social learning between the two honeybee species, and at the existence of a learning component in the honeybee dance language

    Differential expression of miRNAs related to caste differentiation in the honey bee, Apis mellifera

    Get PDF
    International audienceAbstractHoney bees are very important eusocial insects and are involved in the pollination of many plants. Queen bees and worker bees can develop from the same fertilized eggs and are thus genetically identical despite their substantial behavioral and physiological differences. The mechanism governing developmental differences between worker and queen bees has always attracted much interest. While there are several reports on messenger RNA (mRNA) expression related to caste differentiation or microRNA (miRNA) expression in one time point of caste differentiation, no systematic investigation of the dynamic expression of small RNAs along with these two caste development has, thus far, been carried out. In this study, we present the dynamic expression profiles of queen and worker bee small RNAs and show caste-specific miRNA expression patterns between them, indicating that miRNAs may be related to the differential development of worker and queen bee larvae. Results presented here will make a valuable contribution to understanding of the caste switch between worker and queen bees

    Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L

    No full text
    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁡ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.This study was supported by earmarked funds for Modern Agro-industry Technology Research System (No. CARS-45-KXJ3), Nature and Science Foundation Commission of Zhejiang Province (R3080306) to SKS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Molecular Cloning and Characterization of Juvenile Hormone Acid Methyltransferase in the Honey Bee, Apis mellifera, and Its Differential Expression during Caste Differentiation

    No full text
    Juvenile hormone acid methyltransferase (JHAMT) is an enzyme involved in one of the final steps of juvenile hormone biosynthesis in insects. It transfers a methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group of either farnesoic acid (FA) or JH acid (JHA). Several genes coding for JHAMT have been cloned and characterized from insects from different orders, and they have been shown to play critical roles in metamorphosis and reproduction. However, the significance of JHAMT in Hymenopteran insects is unknown. We used RACE amplification method to clone JHAMT cDNA from the honey bee, Apis mellifera (AmJHAMT). The full length cDNA of AmJHAMT that we cloned is 1253bp long and encodes a 278-aa protein that shares 32-36% identity with known JHAMTs. A SAM-binding motif, conserved in the SAM-dependent methyltransferase (SAM-MT) superfamily, is present in AmJHAMT. Its secondary structure also contains a typical SAM-MT fold. Most of the active sites bound with SAM and substrates (JHA or FA) are conserved in AmJHAMT as in other JHAMT orthologs. Phylogenetic analysis clustered AmJHAMT with the other orthologs from Hymenoptera to form a major clade in the phylogenetic tree. Purified recombinant AmJHAMT protein expressed in E. coli was used to produce polyclonal antibodies and to verify the identity of AmJHAMT by immunoblotting and mass spectrometry. Quantitative RT-PCR and immunoblotting analyses revealed that queen larvae contained significantly higher levels of AmJHAMT mRNA and protein than worker larvae during the periods of caste development. The temporal profiles of both AmJHAMT mRNA and protein in queens and workers showed a similar pattern as the JH biosynthesis. These results suggest that the gene that we cloned codes for a functional JHAMT that catalyzes the final reactions of JH biosynthesis in honey bees. In addition, AmJHAMT may play an important role in honey bee caste differentiation.The research was supported by the earmarked funds for Modern Agro-industry Technology Research System (No.CARS-45-KXJ3) and National Natural Science Foundation of China (No.30571409) to SKS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Recipe for a Busy Bee: MicroRNAs in Honey Bee Caste Determination

    No full text
    Social caste determination in the honey bee is assumed to be determined by the dietary status of the young larvae and translated into physiological and epigenetic changes through nutrient-sensing pathways. We have employed Illumina/Solexa sequencing to examine the small RNA content in the bee larval food, and show that worker jelly is enriched in miRNA complexity and abundance relative to royal jelly. The miRNA levels in worker jelly were 7-215 fold higher than in royal jelly, and both jellies showed dynamic changes in miRNA content during the 4(th) to 6(th) day of larval development. Adding specific miRNAs to royal jelly elicited significant changes in queen larval mRNA expression and morphological characters of the emerging adult queen bee. We propose that miRNAs in the nurse bee secretions constitute an additional element in the regulatory control of caste determination in the honey bee.The research was supported by National Sciences Foundation of China Grant No.30630040; National Key Basic Research & Development Program 973 under Grant Nos. 2009CB825401 and 2007CB946901 to RSC, the earmarked fund for Modern Agro-industry Technology Research System (No. CARS-45-KXJ3), and a grant of the National Natural Science Foundation of China (NSFC 30571409) to SKS, and the Nature and Science Foundation Commission of Zhejiang Province (R3080306) to SKS. Zhang was supported by the Australian Research Council through the ARC Centre of Excellence in Vision Science (CE0561903). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis

    Get PDF
    China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production.This work was supported by National Natural Science Foundation of China (No.30571409), Educational and scientific research program for young and middle-aged instructor of Fujian province (No.JAT160161) and the earmarked fund for Modern Agro-industry Technology Research System (No.CARS-45-KXJ3

    Molecular cloning and analysis of four cDNAs from the heads of Apis cerana cerana nurse honeybees coding for major royal jelly proteins

    No full text
    A cDNA library was constructed from 8-day-old worker heads of Apis cerana cerana. A DIG-labeled probe derived from part of an Apis cerana mrjp3 genomic segment was used to screen the library. One hundred and twenty positive clones were identified and characterized. Thirty one clones were homologous with major royal jelly proteins (MRJPs) of Apis mellifera. The most abundant MRJP homologue was MRJP1 (11 clones), followed by MRJP3 (10 clones), MRJP2 (7 clones) and MRJP5 (3 clones). Clones containing A. cerana cerana MRJP1, MRJP2, MRJP3 and MRJP5 cDNAs were identified, completely sequenced, and analyzed with bioinformatics software. Several lines of evidence suggested that the identified cDNAs code for major royal jelly proteins of A. cerana. In addition to polymorphic regions of MRJP3 and MRJP5, another polymorphic repetitive region was found in AccMRJP2. The polymorphism of AcMRJP2 and AcMRJP5 repeat regions were tested by PCR with genomic DNAs of individual honeybees. Different properties of the repetitive regions of MRJP2 genes in two closely related Apis species were discussed

    In-situ elimination of β-flecks in additively manufactured Ti-3.5 wt% Fe alloy

    No full text
    Meta-stable β titanium alloys that feature excellent mechanical properties are of great interest for a range of engineering applications. In particular, Fe containing titanium alloy is one of the most promising alloy systems because Fe is the most economic β stabilizer. However, Fe solute is highly prone to segregation during casting, which leads to the formation of “β flecks” in the subsequent thermo-mechanical treatment and deteriorates the fatigue properties. This paper aims to eliminate β flecks in Ti-3.5 wt%Fe alloy fabricated by Laser Directed Energy Deposition (L-DED), that utilises the high cooling rate during solidification and multiple thermal cycles after solidification. SEM and EDS analysis established that a large β-fleck free zone can be achieved in as-fabricated Ti-3.5 wt%Fe thin-walled samples. Combining the finite element temperature field simulation results and the one-dimensional dynamic diffusion model, the elimination of β flecks is well rationalized. The current work provides a paradigm to evaluate the segregation elimination in the additively manufactured alloy components
    • …
    corecore