7,442 research outputs found
Robust image matching algorithm using SIFT on multiple layered strategies
As for the unsatisfactory accuracy caused by SIFT (scale-invariant feature transform) in complicated image matching, a novel matching method on multiple layered strategies is proposed in this paper. Firstly, the coarse data sets are filtered by Euclidean distance. Next, geometric feature consistency constraint is adopted to refine the corresponding feature points, discarding the points with uncoordinated slope values. Thirdly, scale and orientation clustering constraint method is proposed to precisely choose the matching points. The scale and orientation differences are employed as the elements of -means clustering in the method. Thus, two sets of feature points and the refined data set are obtained. Finally, 3 * delta rule of the refined data set is used to search all the remaining points. Our multiple layered strategies make full use of feature constraint rules to improve the matching accuracy of SIFT algorithm. The proposed matching method is compared to the traditional SIFT descriptor in various tests. The experimental results show that the proposed method outperforms the traditional SIFT algorithm with respect to correction ratio and repeatability.Yong Chen, Lei Shang and Eric H
Note: An object detection method for active camera
To solve the problems caused by a changing background during object detection in active camera, this paper proposes a new method based on SURF (speeded up robust features) and data clustering. The SURF feature points of each image are extracted, and each cluster center is calculated by processing the data clustering of k adjacent frames. Templates for each class are obtained by calculating the histograms within the regions around the center points of the clustering classes. The window of the moving object can be located by finding the region that satisfies the histogram matching result between adjacent frames. Experimental results demonstrate that the proposed method can improve the effectiveness of object detection.Yong Chen, Ronghua Zhang, Lei Shang, and Eric H
Computational fluid dynamics combustion analysis evaluation
This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included
Modeling Solubility of Nitrogen in Clean Fire Extinguishing Agent by Peng-Robinson Equation of State and a Correlation of Henry’s Law Constants
This document is the Accepted Manuscript version of the following article: Mengdong Chen, Yongqi Xie, Hongwei Wu, Shang Shi, and Jianzu Yu, ‘Modelling solubility of Nitrogen in clean fire extinguishing agent by Peng-Robinson equation of state and a correlation of Henry’s law constants’, Applied Thermal Engineering, Vol. 110, pp. 457-468, first published online 29 August 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The version of record is available online at doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.08.179 © 2016 Elsevier Ltd. All rights reserved.Nitrogen is usually used to increase the total pressure of the fluid in aircraft fire suppression bottle. The amount of nitrogen required in the bottle is a significant factor to assure complete and effective discharge into the protected area and it depends on the solubility of the nitrogen in the fire extinguishing agent. In this article, the Peng-Robinson equation of state (PR EOS) including both the classical van der Waals mixing rule and the Wong-Sandler mixing rule is utilized to correlate the Gas-Liquid Equilibrium (GLE) data from available open published literature and to analyze the solubility of nitrogen in halon alternatives such as HFC227ea (C3HF7), CF3I, FC218 (C3F8), and HFC125 (C2HF5) with Halon1301 (CF3Br) as a reference. A new method is proposed to compute the adjustable interaction parameters in the van der Waals mixing rule and in the Wong-Sandler mixing rule based on the measurements of nitrogen required to pressurize the fire suppression bottle to a specified equilibrium pressure at room temperature. Results show that the PR EOS reproduces the GLE data very well with both van der Waals mixing rule and the Wong-Sandler mixing rule and it is then utilized to predict the temperature dependence of the Henry’s law constants of nitrogen dissolved in the fire extinguishing agents. The PR EOS with van der Waals mixing rule is much more appropriate for determining the Henry’s constants than that with the Wong-Sandler mixing rule and the results calculated by the current model are used to establish a new correlation for the Henry’s law constants. This correlation will be very helpful for fire extinguishing bottle designers to acquire the pressure-temperature relationships for the mixture of nitrogen and agents.Peer reviewe
- …