125 research outputs found
Gene-to-metabolite network for biosynthesis of lignans in MeJA-elicited Isatis indigotica hairy root cultures.
Root and leaf tissue of Isatis indigotica shows notable anti-viral efficacy, and are widely used as "Banlangen" and "Daqingye" in traditional Chinese medicine. The plants' pharmacological activity is attributed to phenylpropanoids, especially a group of lignan metabolites. However, the biosynthesis of lignans in I. indigotica remains opaque. This study describes the discovery and analysis of biosynthetic genes and AP2/ERF-type transcription factors involved in lignan biosynthesis in I. indigotica. MeJA treatment revealed differential expression of three genes involved in phenylpropanoid backbone biosynthesis (IiPAL, IiC4H, Ii4CL), five genes involved in lignan biosynthesis (IiCAD, IiC3H, IiCCR, IiDIR, and IiPLR), and 112 putative AP2/ERF transcription factors. In addition, four intermediates of lariciresinol biosynthesis were found to be induced. Based on these results, a canonical correlation analysis using Pearson's correlation coefficient was performed to construct gene-to-metabolite networks and identify putative key genes and rate-limiting reactions in lignan biosynthesis. Over-expression of IiC3H, identified as a key pathway gene, was used for metabolic engineering of I. indigotica hairy roots, and resulted in an increase in lariciresinol production. These findings illustrate the utility of canonical correlation analysis for the discovery and metabolic engineering of key metabolic genes in plants
Mutation of putative N-Linked Glycosylation Sites in Japanese encephalitis Virus Premembrane and Envelope proteins enhances humoral immunity in BALB/C mice after DNA vaccination
Swine are an important host of Japanese encephalitis virus (JEV). The two membrane glycoproteins of JEV, prM and E, each contain a potential N-linked glycosylation site, at positions N15 and N154, respectively. We constructed plasmids that contain the genes encoding wild-type prME (contain the signal of the prM, the prM, and the E coding regions) and three mutant prME proteins, in which the putative N-linked glycosylation sites are mutated individually or in combination, by site-directed mutagenesis. The recombinant plasmids were used as DNA vaccines in mice. Our results indicate that immunizing mice with DNA vaccines that contain the N154A mutation results in elevated levels of interleukin-4 secretion, induces the IgG1 antibody isotype, generates greater titers of anti-JEV antibodies, and shows complete protection against JEV challenge. We conclude that mutation of the putative N-glycosylation site N154 in the E protein of JEV significantly enhances the induced humoral immune response and suggest that this mutant should be further investigated as a potential DNA vaccine against JEV
Unlimited Knowledge Distillation for Action Recognition in the Dark
Dark videos often lose essential information, which causes the knowledge
learned by networks is not enough to accurately recognize actions. Existing
knowledge assembling methods require massive GPU memory to distill the
knowledge from multiple teacher models into a student model. In action
recognition, this drawback becomes serious due to much computation required by
video process. Constrained by limited computation source, these approaches are
infeasible. To address this issue, we propose an unlimited knowledge
distillation (UKD) in this paper. Compared with existing knowledge assembling
methods, our UKD can effectively assemble different knowledge without
introducing high GPU memory consumption. Thus, the number of teaching models
for distillation is unlimited. With our UKD, the network's learned knowledge
can be remarkably enriched. Our experiments show that the single stream network
distilled with our UKD even surpasses a two-stream network. Extensive
experiments are conducted on the ARID dataset
- …