456 research outputs found

    Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Get PDF
    Gene expression from bacterial artificial chromosome (BAC) clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo

    Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat.

    Get PDF
    BACKGROUND: Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression of metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1). RESULTS: Here, we found an infarct volume of 24.8 +/- 2% and a reduced neurological function after two hours of middle cerebral artery occlusion (MCAO), followed by 48 hours of recirculation in rat. Immunocytochemistry and confocal microscopy revealed enhanced expression of MMP-9, TIMP-1, and phosphorylated ERK1/2 in the smooth muscle cells of the ischemic MCA and associated intracerebral microvessels. The specific MEK1/2 inhibitor U0126, given intraperitoneal zero or 6 hours after the ischemic event, reduced the infarct volume significantly (11.8 +/- 2% and 14.6 +/- 3%, respectively; P < 0.05), improved neurological function, normalized expression of phosphorylated ERK1/2, and reduced expression of MMP-9 and TIMP-1 in the vessel walls. Administration of U0126 12 hours after MCAO did not alter the expression of MMP-9. Immunocytochemistry showed no overlap in expression between MMP-9/TIMP-1 and the astrocyte/glial cell marker GFAP in the vessel walls. CONCLUSION: These data are the first to show that the elevated vascular expression of MMP-9 and TIMP-1, associated with breakdown of the blood-brain barrier following focal ischemia, are transcriptionally regulated via the MEK/ERK pathway

    Truncated-ARQ aided adaptive network coding for cooperative two-way relaying networks: cross-layer design and analysis

    No full text
    Network Coding (NC) constitutes a promising technique of improving the throughput of relay-aided networks. In this context, we propose a cross-layer design for both amplifyand- forward (AF-) and decode-and-forward two-way relaying (DF-TWR) based on the NC technique invoked for improving the achievable throughput under specific Quality of Service (QoS) requirements, such as the maximum affordable delay and error rate.We intrinsically amalgamate adaptive Analog Network Coding (ANC) and Network Coded Modulation (NCM) with truncated Automatic Repeat reQuest (ARQ) operating at the different OSI layers. At the data-link layer, we design a pair of improved NC-based ARQ strategies based on the Stop-andwait and the Selective-repeat ARQ protocols. At the physical layer, adaptive ANC/NCM are invoked based on our approximate packet error ratio (PER). We demonstrate that the adaptive ANC design can be readily amalgamated with the proposed protocols. However, adaptive NC-QAM suffers from an SNR-loss, when the transmit rates of the pair of downlink (DL) channels spanning from the relay to the pair of destinations are different. Therefore we develop a novel transmission strategy for jointly selecting the optimal constellation sizes for both of the relay-to-destination links that have to be adapted to both pair of channel conditions. Finally, we analyze the attainable throughput, demonstrating that our truncated ARQ-aided adaptive ANC/NCM schemes attain considerable throughput gains over the schemes dispensing with ARQ, whilst our proposed scheme is capable of supporting bidirectional NC scenarios

    Adopting method of key block and energy distribution to predict the slope stability under blasting

    Get PDF
    At present, an important slope stability analysis method consists in the evaluation of the bearing capacity of key block, which is located between the joints and fissures in rock mass, and plays the decisive role on the slope stability. Because of the defective equivalent accuracy and elusory mechanical path, the traditional analysis methods have some inevitable errors. However, the energy theory can avoid the above defects easily, in this paper, the analytical input energies are potential energy and blasting vibration energy, and the consumed energies are fractured dissipative energy, friction dissipative energy and kinetic energy of instability. In order to eliminate the size effect problem, it is necessary to emphasize each part of energy expression as the energy density form. And the first four items would be confirmed by different theories and tests, so that the instability kinetic energy could be evaluated by the energy conservation law, and then the instability velocity could be calculated to predict the instability grade of slope

    Bias Assessment and Mitigation in LLM-based Code Generation

    Full text link
    Utilizing state-of-the-art Large Language Models (LLMs), automatic code generation models play a pivotal role in enhancing the productivity and efficiency of software development coding procedures. As the adoption of LLMs becomes more widespread in software coding ecosystems, a pressing issue has emerged: does the generated code contain social biases, such as those related to age, gender, and race? This issue concerns the integrity, fairness, and ethical foundation of software applications that depend on the code generated by these models, yet is under-explored in the literature. This paper presents a novel bias assessment framework that is specifically designed for code generation tasks. Based on this framework, we conduct an extensive evaluation on the bias of nine state-of-the-art LLM-based code generation models. Our findings reveal that first, 31.45\% to 79.93\% code functions generated by our evaluated code generation models are biased, and 9.68\% to 37.37\% code functions' functionality are affected by the bias, which means biases not only exist in code generation models but in some cases, directly affect the functionality of the generated code, posing risks of unintended and possibly harmful software behaviors. To mitigate bias from code generation models, we propose three mitigation strategies, which can decrease the biased code ratio to a very low level of 0.4\% to 4.57\%

    Implementation of a simulation inversion method into estimating the damping coefficient in blasting

    Get PDF
    Damping is a mechanism of energy dissipation in shock and vibration. It is difficult to obtain the damping coefficient by theoretical method accurately because of varying material properties, vibration velocity and frequency, especially for the millisecond delay blasting in tunnel excavation. Therefore, the most effective method is simulation inversion by employing large-scale monitoring data, accurate blast loading model and detailed mechanical parameters. In this paper, in-situ monitoring data was acquired by Blasting Vibration Recorder. The accurate blast loading was calculated on the basis of neural network method, so the contribution rate coefficient of every sequence blasting in total millisecond delay blasting could be confirmed. Mechanical parameter of the host rock was acquired by Split Hopkinson Pressure Bar (SHPB) test. In order to predict the simulated velocity, the numerical model in physical dimensions was built by FLAC3D, alongside the constitutive parameters from laboratory tests and different damping coefficients. Compared with the monitoring attenuation law, the damping coefficient of host rock could be finally confirmed

    Reconfigurable Intelligent Surface Assisted Free Space Optical Information and Power Transfer

    Full text link
    Free space optical (FSO) transmission has emerged as a key candidate technology for 6G to expand new spectrum and improve network capacity due to its advantages of large bandwidth, low electromagnetic interference, and high energy efficiency. Resonant beam operating in the infrared band utilizes spatially separated laser cavities to enable safe and mobile high-power energy and high-rate information transmission but is limited by line-of-sight (LOS) channel. In this paper, we propose a reconfigurable intelligent surface (RIS) assisted resonant beam simultaneous wireless information and power transfer (SWIPT) system and establish an optical field propagation model to analyze the channel state information (CSI), in which LOS obstruction can be detected sensitively and non-line-of-sight (NLOS) transmission can be realized by changing the phased of resonant beam in RIS. Numerical results demonstrate that, apart from the transmission distance, the NLOS performance depends on both the horizontal and vertical positions of RIS. The maximum NLOS energy efficiency can achieve 55% within a transfer distance of 10m, a translation distance of ±\pm4mm, and rotation angle of ±\pm50{\deg}
    corecore