11,251 research outputs found

    Jamming Transition of Point-to-Point Traffic Through Cooperative Mechanisms

    Full text link
    We study the jamming transition of two-dimensional point-to-point traffic through cooperative mechanisms using computer simulation. We propose two decentralized cooperative mechanisms which are incorporated into the point-to-point traffic models: stepping aside (CM-SA) and choosing alternative routes (CM-CAR). Incorporating CM-SA is to prevent a type of ping-pong jumps from happening when two objects standing face-to-face want to move in opposite directions. Incorporating CM-CAR is to handle the conflict when more than one object competes for the same point in parallel update. We investigate and compare four models mainly from fundamental diagrams, jam patterns and the distribution of cooperation probability. It is found that although it decreases the average velocity a little, the CM-SA increases the critical density and the average flow. Despite increasing the average velocity, the CM-CAR decreases the average flow by creating substantially vacant areas inside jam clusters. We investigate the jam patterns of four models carefully and explain this result qualitatively. In addition, we discuss the advantage and applicability of decentralized cooperation modeling.Comment: 17 pages, 14 figure

    Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap

    Full text link
    We present how to control interactions between solitons, either bright or dark, in Bose-Einstein condensates by synchronizing Feshbach resonance and harmonic trap. Our results show that as long as the scattering length is to be modulated in time via a changing magnetic field near the Feshbach resonance, and the harmonic trapping frequencies are also modulated in time, exact solutions of the one-dimensional nonlinear Schr\"{o}dinger equation can be found in a general closed form, and interactions between two solitons are modulated in detail in currently experimental conditions. We also propose experimental protocols to observe the phenomena such as fusion, fission, warp, oscillation, elastic collision in future experiments.Comment: 7 pages, 7 figure

    The finite-temperature thermodynamics of a trapped unitary Fermi gas within fractional exclusion statistics

    Full text link
    We utilize a fractional exclusion statistics of Haldane and Wu hypothesis to study the thermodynamics of a unitary Fermi gas trapped in a harmonic oscillator potential at ultra-low finite temperature. The entropy per particle as a function of the energy per particle and energy per particle versus rescaled temperature are numerically compared with the experimental data. The study shows that, except the chemical potential behavior, there exists a reasonable consistency between the experimental measurement and theoretical attempt for the entropy and energy per particle. In the fractional exclusion statistics formalism, the behavior of the isochore heat capacity for a trapped unitary Fermi gas is also analyzed.Comment: 6 pages, 6 figure

    Light-induced half-quantized Hall effect and axion insulator

    Full text link
    Motivated by the recent experimental realization of the half-quantized Hall effect phase in a three-dimensional (3D) semi-magnetic topological insulator [M. Mogi et al., Nature Physics 18, 390 (2022)], we propose a scheme for realizing the half-quantized Hall effect and axion insulator in experimentally mature 3D topological insulator heterostructures. Our approach involves optically pumping and/or magnetically doping the topological insulator surface, such as to break time reversal and gap out the Dirac cones. By toggling between left and right circularly polarized optical pumping, the sign of the half-integer Hall conductance from each of the surface Dirac cones can be controlled, such as to yield half-quantized (0+1/20+1/2), axion (−1/2+1/2=0-1/2+1/2=0), and Chern (1/2+1/2=11/2+1/2=1) insulator phases. We substantiate our results based on detailed band structure and Berry curvature numerics on the Floquet Hamiltonian in the high-frequency limit. Our paper showcases how topological phases can be obtained through mature experimental approaches such as magnetic layer doping and circularly polarized laser pumping and opens up potential device applications such as a polarization chirality-controlled topological transistor.Comment: 24 pages, 11 figures, update references, published versio

    Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9.

    Get PDF
    The type II CRISPR/Cas9 system has been used widely for genome editing in zebrafish. However, the requirement for the 5'-NGG-3' protospacer-adjacent motif (PAM) of Cas9 from Streptococcus pyogenes (SpCas9) limits its targeting sequences. Here, we report that a Cas9 ortholog from Staphylococcus aureus (SaCas9), and its KKH variant, successfully induced targeted mutagenesis with high frequency in zebrafish. Confirming previous findings, the SpCas9 variant, VQR, can also induce targeted mutations in zebrafish. Bioinformatics analysis of these new Cas targets suggests that the number of available target sites in the zebrafish genome can be greatly expanded. Collectively, the expanded target repertoire of Cas9 in zebrafish should further facilitate the utility of this organism for genetic studies of vertebrate biology

    A Two-Dimensional CA Traffic Model with Dynamic Route Choices Between Residence and Workplace

    Full text link
    The Biham, Middleton and Levine (BML) model is extended to describe dynamic route choices between the residence and workplace in cities. The traffic dynamic in the city with a single workplace is studied from the velocity diagram, arrival time probability distribution, destination arrival rate and convergence time. The city with double workplaces is also investigated to compared with a single workplace within the framework of four modes of urban growth. The transitional region is found in the velocity diagrams where the system undergoes a continuous transition from a moving phase to a completely jamming phase. We perform a finite-size scaling analysis of the critical density from a statistical point of view and the order parameter of this jamming transition is estimated. It is also found that statistical properties of urban traffic are greatly influenced by the urban area, workplace area and urban layout.Comment: 18 pages, 13 figure
    • …
    corecore