4 research outputs found

    The University of Michigan Dioxin Exposure Study: Predictors of Human Serum Dioxin Concentrations in Midland and Saginaw, Michigan

    Get PDF
    Background: We conducted a population-based human exposure study in response to concerns among the population of Midland and Saginaw counties, Michigan, that discharges by the Dow Chemical Company of dioxin-like compounds into the nearby river and air had led to an increase in residents’ body burdens of polychlorinated dibenzofurans (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (PCBs), here collectively referred to as “dioxins.” Objectives: We sought to identify factors that explained variation in serum dioxin concentrations among the residents of Midland and Saginaw counties. Exposures to dioxins in soil, river sediments, household dust, historic emissions, and contaminated fish and game were of primary interest. Methods: We studied 946 people in four populations in the contaminated area and in a referent population, by interview and by collection of serum, household dust, and residential soil. Linear regression was used to identify factors associated with serum dioxins. Results: Demographic factors explained a large proportion of variation in serum dioxin concentrations. Historic exposures before 1980, including living in the Midland/Saginaw area, hunting and fishing in the contaminated areas, and working at Dow, contributed to serum dioxin levels. Exposures since 1980 in Midland and Saginaw counties contributed little to serum dioxins. Conclusions: This study provides valuable insights into the relationships between serum dioxins and environmental factors, age, sex, body mass index, smoking, and breast-feeding. These factors together explain a substantial proportion of the variation in serum dioxin concentrations in the general population. Historic exposures to environmental contamination appeared to be of greater importance than recent exposures for dioxins

    Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts

    No full text
    Experimental and/or epidemiological studies suggest that prenatal exposure to bisphenol A (BPA) may delay fetal lung development and maturation and increase the susceptibility to childhood respiratory disease. However, the underlying mechanisms remain to be elucidated. In our previous study with cultured human fetal lung fibroblasts (HFLF), we demonstrated that 24-h exposure to 1 and 100 µM BPA increased GPR30 protein in the nuclear fraction. Exposure to 100 μM BPA had no effects on cell viability, but increased cytoplasmic expression of ERβ and release of GDF-15, as well as decreased release of IL-6, ET-1, and IP-10 through suppression of NFκB phosphorylation. By performing global gene expression and pathway analysis in this study, we identified molecular pathways, gene networks, and key molecules that were affected by 100, but not 0.01 and 1 µM BPA in HFLF. Using multiple genomic and proteomic tools, we confirmed these changes at both gene and protein levels. Our data suggest that 100 μM BPA increased CYP1B1 and HSD17B14 gene and protein expression and release of endogenous estradiol, which was associated with increased ROS production and DNA double-strand breaks, upregulation of genes and/or proteins in steroid synthesis and metabolism, and activation of Nrf2-regulated stress response pathways. In addition, BPA activated ATM-p53 signaling pathway, resulting in increased cell cycle arrest at G1 phase, senescence and autophagy, and decreased cell proliferation in HFLF. The results suggest that prenatal exposure to BPA at certain concentrations may affect fetal lung development and maturation, and thereby affecting susceptibility to childhood respiratory diseases
    corecore