353 research outputs found

    Recent Progress in Cosmology and Particle Astrophysics

    Full text link
    Recent years have seen dramatic progress in cosmology and particle astrophysics. So much so that anyone who dares to offer an overview would certainly risk him- or herself for being incomplete and biased at best, and even incorrect due to the author's limited expertise. It is with this understanding and excuse that I risk myself in offering this review. After a brief summary of Planck mission's first results, I highlight some selected theoretical and experimental advancement in dark energy, dark matter, and cosmic neutrinos research. It is hoped that with a glance through these exciting development, one would be convinced that we are now a step closer to the ultimate understanding of our universe, while major breakthroughs are still required.Comment: 10 pages, 2 figure

    Generalized Uncertainty Principle and Dark Matter

    Full text link
    There have been proposals that primordial black hole remnants (BHRs) are the dark matter, but the idea is somewhat vague. Recently we argued that the generalized uncertainty principle (GUP) may prevent black holes from evaporating completely, in a similar way that the standard uncertainty principle prevents the hydrogen atom from collapsing. We further noted that the hybrid inflation model provides a plausible mechanism for production of large numbers of small black holes. Combining these we suggested that the dark matter might be composed of Planck-size BHRs. In this paper we briefly review these arguments, and discuss the reheating temperature as a result of black hole evaporation.Comment: Contributed to the Proceedings of International Symposium on Frontiers of Science in Celebration of the 80th Birthday of Chen Ning Yang, June 17-19, 2002, Beijing, Chin

    Constraining GRB as Source for UHE Cosmic Rays through Neutrino Observations

    Full text link
    The origin of ultra-high energy cosmic rays (UHECR) has been widely regarded as one of the major questions in the frontiers of particle astrophysics. Gamma ray bursts (GRB), the most violent explosions in the universe second only to the Big Bang, have been a popular candidate site for UHECR productions. The recent IceCube report on the non-observation of GRB induced neutrinos therefore attracts wide attention. This dilemma requires a resolution: either the assumption of GRB as UHECR accelerator is to be abandoned or the expected GRB induced neutrino yield was wrong. It has been pointed out that IceCube has overestimated the neutrino flux at GRB site by a factor of ∼5\sim 5. In this paper we point out that, in addition to the issue of neutrino production at source, the neutrino oscillation and the possible neutrino decay during their flight from GRB to Earth should further reduce the detectability of IceCube, which is most sensitive to the muon-neutrino flavor as far as point-source identification is concerned. Specifically, neutrino oscillation will reduce the muon-neutrino flavor ratio from 2/3 per neutrino at GRB source to 1/3 on Earth, while neutrino decay, if exists and under the assumption of normal hierarchy of mass eigenstates, would result in a further reduction of muon-neutrino ratio to 1/8. With these in mind, we note that there have been efforts in recent years in pursuing other type of neutrino telescopes based on Askaryan effect, which can in principle observe and distinguish all three flavors with comparable sensitivities. Such new approach may therefore be complementary to IceCube in shedding more lights on this cosmic accelerator question.Comment: 9 pages, 1 figur

    Gauge Theory of Gravity with de Sitter Symmetry as a Solution to the Cosmological Constant Problem and the Dark Energy Puzzle

    Full text link
    We propose a solution to the longstanding cosmological constant (CC) problem which is based on the fusion of two existing concepts. The first is the suggestion that the proper description of classical gravitational effects is the gauge theory of gravity in which the connection instead of the metric acts as the dynamical variable. The resulting field equation does not then contain the CC term. This removes the connection between the CC and the quantum vacuum energy, and therefore addresses the {\it old} CC problem of why quantum vacuum energy does not gravitate. The CC-equivalent in this approach arises from the constant of integration when reducing the field equation to the Einstein equation. The second is the assumption that the universe obeys de Sitter symmetry, with the observed accelerating expansion as its manifestation. We combine these ideas and identify the constant of integration with the inverse-square of the radius of curvature of the de Sitter space. The origin of dark energy (DE) is therefore associated with the inherent spacetime geometry, with the smallness of DE protected by symmetry. This addresses the {\it new} CC problem, or the DE puzzle. This approach, however, faces major challenges from quantum considerations. These are the ghost problem associated with higher order gravity theories and the quantum instability of the de Sitter spacetime. We discuss their possible remedies.Comment: 8 page

    Laser Cosmology

    Full text link
    Recent years have seen tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena related to particle astrophysics and cosmology typically involve one or more of the following conditions: (1) extremely high energy events; (2) very high density, high temperature processes; (3) super strong field environments. Laboratory experiments using high intensity lasers can calibrate astrophysical observations, investigate underlying dynamics of astrophysical phenomena, and probe fundamental physics in extreme limits. In this article we give an overview of the exciting prospect of laser cosmology. In particular, we showcase its unique capability of investigating frontier cosmology issues such as cosmic accelerator and quantum gravity.Comment: 6 page

    Laser Shaping and Optimization of the Laser-Plasma Interaction

    Get PDF
    The physics of energy transfer between the laser and the plasma in laser wakefield accelerators is studied. We find that wake excitation by arbitrary laser shapes can be parameterized using the total pulse energy and pulse depletion length. A technique for determining laser profiles that produce the required plasma excitation is developed. We show that by properly shaping the longitudinal profile of the driving laser pulse, it is possible to maximize both the transformer ratio and the wake amplitude, achieving optimal laser-plasma coupling. The corresponding family of laser pulse shapes is derived in the nonlinear regime of laser-plasma interaction. Such shapes provide theoretical upper limit on the magnitude of the wakefield and efficiency of the accelerating stage by allowing for uniform photon deceleration inside the laser pulse. We also construct realistic optimal pulse shapes that can be produced in finite-bandwidth laser systems and propose a two-pulse wake amplification scheme using the optimal solution.Comment: 12 pages, 5 figures, contributed to the Advanced Accelerator Concepts 2000 worksho
    • …
    corecore